Question
Question: For a matrix \(A = \left( {\begin{array}{*{20}{c}} 1&{2r - 1} \\\ 0&1 \end{array}} \righ...
For a matrix A = \left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right) , the value of \prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} is equal to
A.\left( {\begin{array}{*{20}{c}}
1&{100} \\\
0&1
\end{array}} \right)
B.\left( {\begin{array}{*{20}{c}}
1&{4950} \\\
0&1
\end{array}} \right)
C.\left( {\begin{array}{*{20}{c}}
1&{5050} \\\
0&1
\end{array}} \right)
D.\left( {\begin{array}{*{20}{c}}
1&{2500} \\\
0&1
\end{array}} \right)
Solution
Hint : The symbol r=1∏50 represents the product of matrices obtained on putting the values r=1,2,3,4….50 in matrix A. Multiplying all the 50 matrices will be tough work so simplifying the product of matrices and by observing a pattern in the results, we can get to the correct answer.
Complete step-by-step answer :
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2(1) - 1} \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(2) - 1} \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(3) - 1} \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(4) - 1} \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{2(50) - 1} \\\
0&1
\end{array}} \right) \\\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&1 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
On multiplying the first two matrices we get,
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 1 \times 0}&{1 \times 3 + 1 \times 1} \\\
{0 \times 1 + 1 \times 0}&{0 \times 3 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&4 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
Now multiplying the matrix obtained by the multiplication of 1st and 2nd matrix with the 3rd matrix,
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 4 \times 0}&{1 \times 5 + 4 \times 1} \\\
{0 \times 1 + 1 \times 0}&{0 \times 5 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&9 \\\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
Now multiplying the obtained matrix with the 4th matrix,
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 9 \times 0}&{1 \times 7 + 9 \times 1} \\\
{0 \times 1 + 1 \times 0}&{0 \times 7 + 1 \times 1}
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{16} \\\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\\
0&1
\end{array}} \right) \\\
Now on observing the result of the multiplication of matrices, we see a common trend as we go on.
On the multiplication of the first two matrices, we got \left( {\begin{array}{*{20}{c}}
1&4 \\\
0&1
\end{array}} \right) which can also be written as \left( {\begin{array}{*{20}{c}}
1&{{{(2)}^2}} \\\
0&1
\end{array}} \right)
On the multiplication of the first three matrices, we got \left( {\begin{array}{*{20}{c}}
1&9 \\\
0&1
\end{array}} \right) which can also be written as \left( {\begin{array}{*{20}{c}}
1&{{{(3)}^2}} \\\
0&1
\end{array}} \right)
On the multiplication of the first four matrices, we got \left( {\begin{array}{*{20}{c}}
1&{16} \\\
0&1
\end{array}} \right) which can also be written as \left( {\begin{array}{*{20}{c}}
1&{{{(4)}^2}} \\\
0&1
\end{array}} \right)
Thus we can say that, on multiplication of first n matrices, we get \left( {\begin{array}{*{20}{c}}
1&{{n^2}} \\\
0&1
\end{array}} \right)
So, on multiplying the 50 matrices, we get \left( {\begin{array}{*{20}{c}}
1&{{{(50)}^2}} \\\
0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{2500} \\\
0&1
\end{array}} \right)
Therefore, \prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2500} \\\
0&1
\end{array}} \right)
So, the correct answer is “Option D”.
Additional information :
r=a∑b Represents the sum of a given quantity from a to b .
For example, x=1∑5x=1+2+3+4+5 whereas x=1∏5x=1×2×3×4×5 .
Note : The product of two matrices \left( {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right) and \left( {\begin{array}{*{20}{c}}
e&f; \\\
g&h;
\end{array}} \right) is equal to
\left( {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
e&f; \\\
g&h;
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{a \times e + b \times g}&{a \times f + b \times h} \\\
{c \times e + d \times g}&{c \times f + d \times h}
\end{array}} \right)
Multiplication of matrices is not commutative, that is AB≠BA so matrices should be multiplied carefully in the given order to get the correct answer.