Question
Question: For a matrix \(A = \left[ {\begin{array}{*{20}{c}} 1&1&2 \\\ 3&0&2 \\\ 1&0&3 \end{a...
For a matrix A = \left[ {\begin{array}{*{20}{c}} 1&1&2 \\\ 3&0&2 \\\ 1&0&3 \end{array}} \right] verify A(adj A)=(adj A)A=∣A∣I.
Solution
First find the cofactor matrix of A. Determine the cofactors of all elements of matrix A. Then transpose the cofactor matrix to get the adjoint of matrix A, i.e. adjA. Multiply the adjoint matrix with A in different order and find the determinant value of A to prove the above result.
Complete step-by-step solution:
According to the question, the given matrix is A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\\
3&0&2 \\\
1&0&3
\end{array}} \right].
To determine the adjoint of the matrix, first we have to find out the cofactors of all of its elements. Let the cofactors are denoted by a then we have:
Cofactors of first row elements:
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{{20}{c}}
1&1&2 \\
3&0&2 \\
1&0&3
\end{array}} \right] \times \left[ {\begin{array}{{20}{c}}
0&{ - 3}&2 \\
{ - 7}&1&4 \\
0&1&{ - 3}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = \left[ {\begin{array}{{20}{c}}
{0 - 7 + 0}&{ - 3 + 1 + 2}&{2 + 4 - 6} \\
{0 - 0 + 0}&{ - 9 + 0 + 2}&{6 + 0 - 6} \\
{0 - 0 + 0}&{ - 3 + 0 + 3}&{2 + 0 - 9}
\end{array}} \right] = \left[ {\begin{array}{{20}{c}}
{ - 7}&0&0 \\
0&{ - 7}&0 \\
0&0&{ - 7}
\end{array}} \right] \\
\Rightarrow A\left( {{\text{adj }}A} \right) = - 7\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]{\text{ }}.....{\text{(1)}} \\