Solveeit Logo

Question

Question: For a man, the angle of elevation of the highest point of the temple situated east of him is \(60 ^ ...

For a man, the angle of elevation of the highest point of the temple situated east of him is 6060 ^ { \circ }. On walking 240 metresto north, the angle of elevation is reduced to 3030 ^ { \circ } then the height of the temple is

A

606m60 \sqrt { 6 } m

B

C

503 m50 \sqrt { 3 } \mathrm {~m}

D

Answer

606m60 \sqrt { 6 } m

Explanation

Solution

Total distance from temple =x2+(240)2\sqrt { x ^ { 2 } + ( 240 ) ^ { 2 } }

where x=htan60=h3x = \frac { h } { \tan 60 ^ { \circ } } = \frac { h } { \sqrt { 3 } }

So distance = h23+(240)2\sqrt { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } }, but hh23+(240)2=13\frac { h } { \sqrt { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } } } = \frac { 1 } { \sqrt { 3 } }

h2h23+(240)2=13\frac { h ^ { 2 } } { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } } = \frac { 1 } { 3 }

After solving h=606h = 60 \sqrt { 6 } metre

Total distance from temple =x2+(240)2\sqrt { x ^ { 2 } + ( 240 ) ^ { 2 } }

where x=htan60=h3x = \frac { h } { \tan 60 ^ { \circ } } = \frac { h } { \sqrt { 3 } }

So distance = h23+(240)2\sqrt { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } }, but hh23+(240)2=13\frac { h } { \sqrt { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } } } = \frac { 1 } { \sqrt { 3 } }

h2h23+(240)2=13\frac { h ^ { 2 } } { \frac { h ^ { 2 } } { 3 } + ( 240 ) ^ { 2 } } = \frac { 1 } { 3 }

After solving h=606h = 60 \sqrt { 6 } metre