Solveeit Logo

Question

Question: For \(a\in R,\) \(\left| a \right|>1\) let \(\displaystyle \lim_{n \to \infty}\dfrac{1+\sqrt[3]{2}+\...

For aR,a\in R, a>1\left| a \right|>1 let limn1+23+33+........+n3n73(1(na+1)2+1(na+2)2+.....+1(na+n)2)=54\displaystyle \lim_{n \to \infty}\dfrac{1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n}}{{{n}^{\dfrac{7}{3}}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}=54 , then possible value(s) of a is(are)
(a)8
(b)-9
(c)7
(d)-6

Explanation

Solution

To solve this question, firstly we will simplify the function in terms of which limit is to be applied and make it more simpler so that we can use the concept of limit as summation. After that we will get two integrals in numerator and denominator, we will solve them and then putting values back to fraction, we will fraction equal to 54 and solve the quadratic equation obtained to get values of a.

Complete step-by-step answer:
Let us see what the concept of limit as summation is.
Suppose we have to evaluate a limit question, say limnf(n)\displaystyle \lim_{n \to \infty}f(n), if we can transform this limit into the form limn1nr=abf(rn)\displaystyle \lim_{n \to \infty}\dfrac{1}{n}\sum\limits_{r=a}^{b}{f\left( \dfrac{r}{n} \right)}, then limnf(n)=abf(x).dx\displaystyle \lim_{n \to \infty}f(n)=\int\limits_{a}^{b}{f(x).dx}.

Now, first let us simplify the value on which we have to apply the limit.
So, we have 1+23+33+........+n3n73(1(na+1)2+1(na+2)2+.....+1(na+n)2)\dfrac{1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n}}{{{n}^{\dfrac{7}{3}}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}.
Now, let us take n13{{n}^{\dfrac{1}{3}}} from denominator to numerator, which will give us n13{{n}^{-\dfrac{1}{3}}} in numerator.
So, we have n13(1+23+33+........+n3)n2(1(na+1)2+1(na+2)2+.....+1(na+n)2)\dfrac{{{n}^{-\dfrac{1}{3}}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}
Or, 1n3(1+23+33+........+n3)n2(1(na+1)2+1(na+2)2+.....+1(na+n)2)\dfrac{\sqrt[3]{\dfrac{1}{n}}\left( 1+\sqrt[3]{2}+\sqrt[3]{3}+........+\sqrt[3]{n} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}
Multiplying, 1n3\sqrt[3]{\dfrac{1}{n}} with terms in bracket, we get
(1n3+2n3+3n3+........+nn3)n2(1(na+1)2+1(na+2)2+.....+1(na+n)2)\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{{{n}^{2}}\left( \dfrac{1}{{{(na+1)}^{2}}}+\dfrac{1}{{{(na+2)}^{2}}}+.....+\dfrac{1}{{{(na+n)}^{2}}} \right)}
Multiplying, 1n3\sqrt[3]{\dfrac{1}{n}} with terms in bracket in denominator, we get
(1n3+2n3+3n3+........+nn3)(n2(na+1)2+n2(na+2)2+.....+n2(na+n)2)\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{{{n}^{2}}}{{{(na+1)}^{2}}}+\dfrac{{{n}^{2}}}{{{(na+2)}^{2}}}+.....+\dfrac{{{n}^{2}}}{{{(na+n)}^{2}}} \right)}
Now, in denominator, multiplying denominator and numerator of each terms by 1n2\dfrac{1}{{{n}^{2}}}, we have
(1n3+2n3+3n3+........+nn3)(1(a+1n)2+1(a+2n)2+.....+1(a+nn)2)\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)}
On observing patterns in numerator and denominator, we can write the terms collectively in terms of summation.
So, we can write numerator 1n3+2n3+3n3+........+nn3\sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} as 1nr=1nrn3\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}} and,
Denominator 1(a+1n)2+1(a+2n)2+.....+1(a+nn)2\dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} as 1nr=1n1(a+rn)2\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}.
So, we have whole fraction (1n3+2n3+3n3+........+nn3)(1(a+1n)2+1(a+2n)2+.....+1(a+nn)2)\dfrac{\left( \sqrt[3]{\dfrac{1}{n}}+\sqrt[3]{\dfrac{2}{n}}+\sqrt[3]{\dfrac{3}{n}}+........+\sqrt[3]{\dfrac{n}{n}} \right)}{\left( \dfrac{1}{{{\left( a+\dfrac{1}{n} \right)}^{2}}}+\dfrac{1}{{{\left( a+\dfrac{2}{n} \right)}^{2}}}+.....+\dfrac{1}{{{\left( a+\dfrac{n}{n} \right)}^{2}}} \right)} as 1nr=1nrn31nr=1n1(a+rn)2\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}.
So, 1nr=1nrn31nr=1n1(a+rn)2\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}
Now, let rn=x\dfrac{r}{n}=x
Here r is variable and n is constant
So, differentiating rn=x\dfrac{r}{n}=x both side with respect to x, we get
drn=dx\dfrac{dr}{n}=dx
Putting limit in 1nr=1nrn31nr=1n1(a+rn)2\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}, we have
limn1nr=1nrn31nr=1n1(a+rn)2\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}}
Now, value of rn=x\dfrac{r}{n}=x, at r = 1 and nn\to \infty , we have x = 0 as 10\dfrac{1}{\infty }\to 0 and value of rn=x\dfrac{r}{n}=x, at r = n and nn\to \infty , we have x = 1.
So, we can rewrite limn1nr=1nrn31nr=1n1(a+rn)2\displaystyle \lim_{n \to \infty}\dfrac{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\sqrt[3]{\dfrac{r}{n}}}}{\dfrac{1}{n}\sum\limits_{r=1}^{n}{\dfrac{1}{{{\left( a+\dfrac{r}{n} \right)}^{2}}}}} as 01x3dx011(a+x)2dx\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}.
So, let I1=01x3{{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}} and I2=011(a+x)2{{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}
We know that abf(x)=F(b)F(a)\int\limits_{a}^{b}{f(x)}=F(b)-F(a) and xn.dx=xn+1n+1+C\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C
So, I1=01x3{{I}_{1}}=\int\limits_{0}^{1}{\sqrt[3]{x}}
I1=(34x43)01{{I}_{1}}=\left( \dfrac{3}{4}{{x}^{\dfrac{4}{3}}} \right)_{0}^{1}
I1=34(10){{I}_{1}}=\dfrac{3}{4}\left( 1-0 \right)
So, I1=34{{I}_{1}}=\dfrac{3}{4}
Now, I2=011(a+x)2{{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}
Let, a + x = t
At, x = 0, t = a and at x = 1, t = a + 1
Differentiating both sides, we get
dx = dt
so, I2=011(a+x)2{{I}_{2}}=\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}} is transformed to I2=aa+11(t)2dt{{I}_{2}}=\int\limits_{a}^{a+1}{\dfrac{1}{{{\left( t \right)}^{2}}}}dt
I2=(1t)aa+1{{I}_{2}}=\left( -\dfrac{1}{t} \right)_{a}^{a+1}
I2=(1a1a+1){{I}_{2}}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)
Putting back value of both integral in 01x3dx011(a+x)2dx=54\dfrac{\int\limits_{0}^{1}{\sqrt[3]{x}}dx}{\int\limits_{0}^{1}{\dfrac{1}{{{\left( a+x \right)}^{2}}}}dx}=54,
We get, 34(1a1a+1)=54\dfrac{\dfrac{3}{4}}{\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)}=54
On simplifying, we get
172=(1a1a+1)\dfrac{1}{72}=\left( \dfrac{1}{a}-\dfrac{1}{a+1} \right)
On solving, we get
a2+a72=0{{a}^{2}}+a-72=0
On factorising, we get
a2+9a8a72=0{{a}^{2}}+9a-8a-72=0
On simplifying, we get
( a + 9 )( a – 8 ) = 0
Or, a = -9, 8

So, the correct answers are “Option a and b”.

Note: To solve such a question must know the concept of limit as summation and also, one should not put limit directly as it will give nothing so one must proceed ahead by simplifying the brackets and then use limit as summation to easily simplify the question. Always remember that abf(x)=F(b)F(a)\int\limits_{a}^{b}{f(x)}=F(b)-F(a) and xn.dx=xn+1n+1+C\int\limits_{{}}^{{}}{{{x}^{n}}.dx=\dfrac{{{x}^{n+1}}}{n+1}}+C Try not to make any calculation error as this will make question more complex and hard to solve.