Solveeit Logo

Question

Question: For a hydrogen atom () in the fourth Bohr orbit (): (a) Calculate the time period of revolution of ...

For a hydrogen atom () in the fourth Bohr orbit (): (a) Calculate the time period of revolution of the electron. (b) Determine how many revolutions the electron completes in seconds (one microsecond).

Answer

a) 9.76 x 10^{-15} s, b) 1.02 x 10^8 revolutions

Explanation

Solution

The problem asks us to calculate the time period of revolution of an electron in the fourth Bohr orbit of a hydrogen atom and determine the number of revolutions it completes in one microsecond.

Key Concepts and Formulas:

  1. Radius of the nth Bohr orbit for a hydrogen atom: rn=n2a0r_n = n^2 a_0 where a0a_0 is the Bohr radius, a0=0.529×1010a_0 = 0.529 \times 10^{-10} m.

  2. Speed of the electron in the nth Bohr orbit for a hydrogen atom: vn=v1nv_n = \frac{v_1}{n} where v1v_1 is the speed of the electron in the first Bohr orbit, v1=2.18×106v_1 = 2.18 \times 10^6 m/s.

  3. Time period of revolution (T): The time period is the time taken to complete one revolution, which is the circumference of the orbit divided by the speed of the electron. Tn=2πrnvnT_n = \frac{2\pi r_n}{v_n}

Calculations:

(a) Calculate the time period of revolution of the electron in the fourth Bohr orbit (n=4n=4).

First, calculate the radius of the fourth orbit (r4r_4): r4=42×a0=16×0.529×1010r_4 = 4^2 \times a_0 = 16 \times 0.529 \times 10^{-10} m r4=8.464×1010r_4 = 8.464 \times 10^{-10} m

Next, calculate the speed of the electron in the fourth orbit (v4v_4): v4=v14=2.18×106 m/s4v_4 = \frac{v_1}{4} = \frac{2.18 \times 10^6 \text{ m/s}}{4} v4=0.545×106 m/sv_4 = 0.545 \times 10^6 \text{ m/s}

Now, calculate the time period (T4T_4): T4=2πr4v4=2×3.14159×8.464×1010 m0.545×106 m/sT_4 = \frac{2\pi r_4}{v_4} = \frac{2 \times 3.14159 \times 8.464 \times 10^{-10} \text{ m}}{0.545 \times 10^6 \text{ m/s}} T4=53.18×10100.545×106T_4 = \frac{53.18 \times 10^{-10}}{0.545 \times 10^6} s T4=97.58×1016T_4 = 97.58 \times 10^{-16} s T49.76×1015T_4 \approx 9.76 \times 10^{-15} s

(b) Determine how many revolutions the electron completes in 1 microsecond (μs\mu s).

1 microsecond = 1×1061 \times 10^{-6} s. The number of revolutions is the total time divided by the time period of one revolution. Number of revolutions = Total TimeTime Period\frac{\text{Total Time}}{\text{Time Period}} Number of revolutions = 1×106 s9.76×1015 s/revolution\frac{1 \times 10^{-6} \text{ s}}{9.76 \times 10^{-15} \text{ s/revolution}} Number of revolutions = 19.76×10(6(15))\frac{1}{9.76} \times 10^{(-6 - (-15))} Number of revolutions = 0.10245×1090.10245 \times 10^9 Number of revolutions 1.02×108\approx 1.02 \times 10^8 revolutions

Explanation of the solution:

(a) The time period of an electron in a Bohr orbit is calculated using the formula Tn=2πrnvnT_n = \frac{2\pi r_n}{v_n}. For the fourth orbit (n=4n=4), the radius r4r_4 is 16a016a_0 and the speed v4v_4 is v1/4v_1/4. Substituting the values of a0=0.529×1010a_0 = 0.529 \times 10^{-10} m and v1=2.18×106v_1 = 2.18 \times 10^6 m/s, we get r4=8.464×1010r_4 = 8.464 \times 10^{-10} m and v4=0.545×106v_4 = 0.545 \times 10^6 m/s. Plugging these into the time period formula yields T49.76×1015T_4 \approx 9.76 \times 10^{-15} s.

(b) To find the number of revolutions in 1 microsecond (10610^{-6} s), we divide the total time by the time period per revolution: Number of revolutions = 106 s9.76×1015 s/revolution1.02×108\frac{10^{-6} \text{ s}}{9.76 \times 10^{-15} \text{ s/revolution}} \approx 1.02 \times 10^8 revolutions.