Solveeit Logo

Question

Question: For a grouped frequency distribution with intervals 5-15, 15-25, and 25-35, with frequencies 10, 20,...

For a grouped frequency distribution with intervals 5-15, 15-25, and 25-35, with frequencies 10, 20, and 15 and mean 20, what is the variance?

A

50

B

56

C

120

D

110

Answer

56

Explanation

Solution

To calculate the variance for a grouped frequency distribution, we use the formula: σ2=i=1nfi(xixˉ)2i=1nfi\sigma^2 = \frac{\sum_{i=1}^{n} f_i (x_i - \bar{x})^2}{\sum_{i=1}^{n} f_i} where:

  • xix_i are the midpoints of the class intervals.
  • fif_i are the frequencies of the class intervals.
  • xˉ\bar{x} is the mean of the distribution.

1. Determine the midpoints (xix_i) for each interval:

  • For the interval 5-15: x1=(5+15)/2=10x_1 = (5 + 15) / 2 = 10
  • For the interval 15-25: x2=(15+25)/2=20x_2 = (15 + 25) / 2 = 20
  • For the interval 25-35: x3=(25+35)/2=30x_3 = (25 + 35) / 2 = 30

2. List the given frequencies (fif_i):

  • f1=10f_1 = 10
  • f2=20f_2 = 20
  • f3=15f_3 = 15

3. Note the given mean (xˉ\bar{x}):

  • xˉ=20\bar{x} = 20

4. Calculate the total frequency (fi\sum f_i): fi=10+20+15=45\sum f_i = 10 + 20 + 15 = 45

5. Calculate the deviation from the mean (xixˉx_i - \bar{x}), the squared deviation (xixˉ)2(x_i - \bar{x})^2, and fi(xixˉ)2f_i (x_i - \bar{x})^2 for each class:

Class IntervalMidpoint (xix_i)Frequency (fif_i)xixˉx_i - \bar{x}(xixˉ)2(x_i - \bar{x})^2fi(xixˉ)2f_i (x_i - \bar{x})^2
5-1510101020=1010 - 20 = -10(10)2=100(-10)^2 = 10010×100=100010 \times 100 = 1000
15-2520202020=020 - 20 = 0(0)2=0(0)^2 = 020×0=020 \times 0 = 0
25-3530153020=1030 - 20 = 10(10)2=100(10)^2 = 10015×100=150015 \times 100 = 1500
Totalfi=45\sum f_i = 45fi(xixˉ)2=2500\sum f_i (x_i - \bar{x})^2 = 2500

6. Calculate the variance (σ2\sigma^2): σ2=fi(xixˉ)2fi=250045\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i} = \frac{2500}{45} σ2=500×59×5=5009\sigma^2 = \frac{500 \times 5}{9 \times 5} = \frac{500}{9} σ255.555...\sigma^2 \approx 55.555...

Rounding to the nearest whole number or checking the options, 55.555... is closest to 56.