Solveeit Logo

Question

Question: For a given value A, if \(\tan A+\cot A=4\), then \({{\tan }^{2}}A+{{\cot }^{2}}A\) is equal to A....

For a given value A, if tanA+cotA=4\tan A+\cot A=4, then tan2A+cot2A{{\tan }^{2}}A+{{\cot }^{2}}A is equal to
A. 10
B. 11
C. 12
D. 14

Explanation

Solution

To solve this question, we have to use the relation of cotA=1tanA\cot A=\dfrac{1}{\tan A} in the equation tanA+cotA=4\tan A+\cot A=4 and we have to solve for tanA\tan A using the quadratic equation concept. After getting the value of tanA\tan A, we can get the value of cotA\cot A, and then we can substitute the values in tan2A+cot2A{{\tan }^{2}}A+{{\cot }^{2}}A to get the required answer.

Complete step-by-step solution:
In the question, it is given that tanA+cotA=4(1)\tan A+\cot A=4\to \left( 1 \right)
We know that cotA=1tanA\cot A=\dfrac{1}{\tan A}
Substituting in the equation-1, we get
tanA+1tanA=4\tan A+\dfrac{1}{\tan A}=4
Taking L.C.M and multiplying by tanA\tan A, we get
tanA×tanA+1tanA=4 tan2A+1tanA=4 tan2A+1=4tanA \begin{aligned} & \dfrac{\tan A\times \tan A+1}{\tan A}=4 \\\ & \dfrac{{{\tan }^{2}}A+1}{\tan A}=4 \\\ & {{\tan }^{2}}A+1=4\tan A \\\ \end{aligned}
Subtracting 4tanA4\tan A on both sides, we get
tan2A4tanA+1=0(2){{\tan }^{2}}A-4\tan A+1=0\to \left( 2 \right)
We can infer that equation-2 is a quadratic equation in tanA\tan A.
The roots of a quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 are given by
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Comparing this with the equation-2, we get
x=tanA a=1,b=4,c=1 \begin{aligned} & x=\tan A \\\ & a=1,b=-4,c=1 \\\ \end{aligned}
So we can write the values of tanA\tan A as
tanA=(4)±(4)24×1×12×1 tanA=4±1642=4±122=4±4×32=4±232 \begin{aligned} & \tan A=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times 1}}{2\times 1} \\\ & \tan A=\dfrac{4\pm \sqrt{16-4}}{2}=\dfrac{4\pm \sqrt{12}}{2}=\dfrac{4\pm \sqrt{4\times 3}}{2}=\dfrac{4\pm 2\sqrt{3}}{2} \\\ \end{aligned}
Cancelling 2 in the numerator and denominator, we get
tanA=2±3\tan A=2\pm \sqrt{3}
Let us consider the case -1 as tanA=2+3\tan A=2+\sqrt{3}
As we know that cotA=1tanA\cot A=\dfrac{1}{\tan A}
cotA=12+3\cot A=\dfrac{1}{2+\sqrt{3}}
Multiplying by 232-\sqrt{3} in the numerator and denominator, we get
cotA=12+3×2323=23(2+3)×(23)\cot A=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\left( 2+\sqrt{3} \right)\times \left( 2-\sqrt{3} \right)}
The denominator is in the form of (a+b)×(ab)=a2b2\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}
Using the relation in the denominator, we get
cotA=2322(3)2=2343=23\cot A=\dfrac{2-\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3}
Using the values of tanA and cotA\tan A\text{ and }\cot A in the required expression tan2A+cot2A{{\tan }^{2}}A+{{\cot }^{2}}A, we get
tan2A+cot2A=(2+3)2+(23)2{{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}
The R.H.S is of the form (a+b)2+(ab)2=2×(a2+b2){{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)
Applying this in the above R.H.S, we get
(2+3)2+(23)2=2×(22+(3)2)=2×(4+3)=2×7=14{{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14
So, for case -1 we get,
tan2A+cot2A=14{{\tan }^{2}}A+{{\cot }^{2}}A=14
Let us consider the case -2 as tanA=23\tan A=2-\sqrt{3}
As we know that cotA=1tanA\cot A=\dfrac{1}{\tan A}
cotA=123\cot A=\dfrac{1}{2-\sqrt{3}}
Multiplying by 2+32+\sqrt{3} in the numerator and denominator, we get
cotA=123×2+32+3=2+3(23)×(2+3)\cot A=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}=\dfrac{2+\sqrt{3}}{\left( 2-\sqrt{3} \right)\times \left( 2+\sqrt{3} \right)}
The denominator is in the form of (a+b)×(ab)=a2b2\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}
Using the relation in the denominator, we get
cotA=2+322(3)2=2+343=2+3\cot A=\dfrac{2+\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3}
Using the values of tanA and cotA\tan A\text{ and }\cot A in the required expression tan2A+cot2A{{\tan }^{2}}A+{{\cot }^{2}}A, we get
tan2A+cot2A=(23)2+(2+3)2{{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}
The R.H.S is of the form (ab)2+(a+b)2=2×(a2+b2){{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)
Applying this in the above R.H.S, we get
(23)2+(2+3)2=2×(22+(3)2)=2×(4+3)=2×7=14{{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14
So, for case -2 we get,
tan2A+cot2A=14{{\tan }^{2}}A+{{\cot }^{2}}A=14
From the two cases, we got the same answer, so we can conclude that
tan2A+cot2A=14{{\tan }^{2}}A+{{\cot }^{2}}A=14
\therefore tan2A+cot2A=14{{\tan }^{2}}A+{{\cot }^{2}}A=14. The answer is option-D

Note: We can do the question in an alternative way that is to square on both sides of tanA+cotA=4\tan A+\cot A=4. Squaring on both sides, we get
(tanA+cotA)2=42 tan2A+cot2A+2×tanA×cotA=16 \begin{aligned} & {{\left( \tan A+\cot A \right)}^{2}}={{4}^{2}} \\\ & {{\tan }^{2}}A+{{\cot }^{2}}A+2\times \tan A\times \cot A=16 \\\ \end{aligned}
As cotA=1tanA\cot A=\dfrac{1}{\tan A}
tanA×cotA=1\tan A\times \cot A=1
Using this in the above equation, we get
tan2A+cot2A+2×1=16 tan2A+cot2A=162 tan2A+cot2A=14 \begin{aligned} & {{\tan }^{2}}A+{{\cot }^{2}}A+2\times 1=16 \\\ & {{\tan }^{2}}A+{{\cot }^{2}}A=16-2 \\\ & {{\tan }^{2}}A+{{\cot }^{2}}A=14 \\\ \end{aligned}
The answer is option-D.