Solveeit Logo

Question

Question: For a given matrix A = \(\begin{bmatrix} \cos\theta & - \sin\theta \\ \sin\theta & \cos\theta \end{b...

For a given matrix A = [cosθsinθsinθcosθ]\begin{bmatrix} \cos\theta & - \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}

which of the following statement holds good:

A

A = A–1" q Ī R

B

A is symmetric, for q = (2n +1)π2\frac{\pi}{2}, n Ī I

C

A is orthogonal matrix for q Ī R

D

A is skew symmetric, for q = np, n Ī I

Answer

A is orthogonal matrix for q Ī R

Explanation

Solution

For q = (2n +1)π2\frac{\pi}{2}

A=[01±10]\begin{bmatrix} 0 & \mp 1 \\ \pm 1 & 0 \end{bmatrix}which is not symmetric for q = np

A = [±100±1]\begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}which is not skew symmetric

A2 = [cos2θsin2θsin2θcos2θ]\begin{bmatrix} \cos 2\theta & - \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}¹ I so A ¹ A–1