Solveeit Logo

Question

Chemistry Question on Rate of a Chemical Reaction

For a given chemical reaction
γ1A+γ2Bγ3C+γ4Dγ_1A + γ_2B → γ_3C + γ_4D
Concentration of C changes from 10 mmol dm–3 to 20 mmol dm–3 in 10 seconds. Rate of appearance of D is 1.5 times the rate of disappearance of B which is twice the rate of disappearance A. The rate of appearance of D has been experimentally determined to be 9 mmol dm–3 s–1. Therefore, the rate of reaction is _____ mmol dm–3 s–1. (Nearest Integer)

Answer

1r1(d[A]dt)=1r2(d[B]dt)=1r3(d[C]dt)=1r4(d[D]dt)\frac {1}{r_1}(\frac {-d[A]}{dt}) = \frac {1}{r_2}(\frac {-d[B]}{dt}) = \frac {1}{r_3}(\frac {-d[C]}{dt}) =\frac {1}{r_4}(\frac {d[D]}{dt)}

d[D]dt=r4r2(d[B]dt)\frac {d[D]}{dt} = \frac {r_4}{r_2}(\frac {-d[B]}{dt})

r4r2=32\frac {r_4}{r_2} =\frac {3}{2}

d[B]dt=r2r1(d[B]dt)\frac {d[B]}{dt} = \frac {r_2}{r_1}(\frac {-d[B]}{dt})

r2r1=2\frac {r_2}{r_1}= 2
r4=1.5r2=3r1r_4 = 1.5r_2 = 3r_1
d[C]dt=\frac {d[C]}{dt}= 1 m.mol dm–3 sec–1

d[D]dt=\frac {d[D]}{dt}= 9 m.mol dm–3 sec–1

d[D]dt=r4r3.d[C]t\frac {d[D]}{dt} = \frac {r_4}{r_3}.\frac {d[C]}{t}

r4r3=9\frac {r_4}{r_3} = 9
r4=9r3=3r1r_4 = 9r_3 = 3r_1
r1=3r3r_1 = 3r_3
3r3A+6r3Br3C+9r3D3r_3A + 6r_3B → r_3C + 9r_3D
So, rate of reaction = 19×9\frac 19 \times 9 m.mol dm–3 sec–1
= 11 m.mol dm–3 sec–1

So, the answer is 11.