Solveeit Logo

Question

Question: For a gas sample with N<sub>0</sub> number of molecules, function N(V) is given by : N(V) = \(\frac...

For a gas sample with N0 number of molecules, function N(V) is given by :

N(V) = dNdV=[3N0V03]\frac{dN}{dV} = \left\lbrack \frac{3N_{0}}{V_{0}^{3}} \right\rbrackV2 for 0 £ V £ V0 and N(V) = 0 for V > V0 where dN is number of molecules in speed range V to V + dV. The rms speed of the molecules is –

A

25\sqrt{\frac{2}{5}}V0

B

35\sqrt{\frac{3}{5}}V0

C

2V0\sqrt{2}V_{0}

D

3V0\sqrt{3}V_{0}

Answer

35\sqrt{\frac{3}{5}}V0

Explanation

Solution

Vrms2V_{rms}^{2}= < V2 > = V12+V22+V32+.......N\frac{V_{1}^{2} + V_{2}^{2} + V_{3}^{2} + .......}{N}

= V2dNdN\frac{\int_{}^{}{V^{2}dN}}{\int_{}^{}{dN}} here dNdV\frac{dN}{dV} = N(V)

Vrms2V_{rms}^{2} = 1N0N(V)V2dV\frac{1}{N}\int_{0}^{\infty}{N(V)V^{2}dV}

= 1N0V0[3NV03V2]\frac{1}{N}\int_{0}^{V_{0}}\left\lbrack \frac{3N}{V_{0}^{3}}V^{2} \right\rbrack V2 dV = 35V02\frac{3}{5}V_{0}^{2}̃ Vrms = 35\sqrt{\frac{3}{5}} V0