Solveeit Logo

Question

Question: For a gas of molecular weight M specific heat capacity at constant pressure is ![](https://cdn.puree...

For a gas of molecular weight M specific heat capacity at constant pressure is

A

Rγ1\frac { \mathrm { R } } { \gamma - 1 }

B

γRγ1\frac { \gamma \mathrm { R } } { \gamma - 1 }

C

γRM(γ1)\frac { \gamma \mathrm { R } } { \mathrm { M } ( \gamma - 1 ) }

D

γRM(γ1)\frac { \gamma \mathrm { RM } } { ( \gamma - 1 ) }

Answer

γRM(γ1)\frac { \gamma \mathrm { R } } { \mathrm { M } ( \gamma - 1 ) }

Explanation

Solution

According to Mayer’s relation

or 1CVCp=RCp1 - \frac { C _ { V } } { C _ { p } } = \frac { R } { C _ { p } }

Or

Specific heat capacity = molar heat capacity  molecular weight = \frac { \text { molar heat capacity } } { \text { molecular weight } }

Specific heat capacity at constant pressure =γRM(γ1)= \frac { \gamma R } { M ( \gamma - 1 ) }