Solveeit Logo

Question

Question: For a first order reaction A \(\rightarrow\)B + 2C + 3D (A is optically inactive and B, C and D are...

For a first order reaction A \rightarrowB + 2C + 3D (A is optically inactive and B, C and D are dextrorotary), the optical rotation at time t and \infty are rt andrr_{\infty} respectively, the expression for rate constant is

A

K1tInrtrrtK - \frac{1}{t}In\frac{r_{t}}{r_{\infty} - r_{t}}

B

k=ltInrrrtk = \frac{l}{t}In\frac{r_{\infty}}{r_{\infty} - r_{t}}

C

k=ltInrrtrtk = \frac{l}{t}In\frac{r_{\infty} - r_{t}}{r_{t}}

D

None of these

Answer

k=ltInrrrtk = \frac{l}{t}In\frac{r_{\infty}}{r_{\infty} - r_{t}}

Explanation

Solution

 B + 2C + 3D\text{A }\overset{\quad\quad}{\rightarrow}\text{ B + 2C + 3D}

Optical Nrotation – θ1 θ2θ3\theta_{1}\text{ }\theta_{2}\theta_{3}

t=0a 0 0 0\text{t=0} a \text{ 0 0} \text{ 0}

Optical rotation at t = 0 is zero.

t=ta-x x 2x3x\text{t=t} \text{a-x} \text{ x 2x3x}

Optical rotation at time = t is

(x.q1 + 2x.q2 + 3x.q3).

t= 0 a 2a 3a\text{t= }\infty 0 \text{ a 2a} \text{ 3a}

Optical rotation at time = ¥ is

(a.q1 + 2a.q2 + 3a.q3).

(x.θ1 + 2x.θ2 + 3x.θ3) = rt;(a. θ1 + 2a. θ2 + 3a.θ3) = rx=rtθ1+2θ+3θ3;a=rθ1+2θ2+3θ3(\text{x.}\theta_{1}\text{ + 2x.}\theta_{2}\text{ + 3x.}\theta_{3})\text{ = }\text{r}_{t};(\text{a. }\theta_{1}\text{ + 2a. }\theta_{2}\text{ + 3a.}\theta_{3})\text{ = }\text{r}_{\infty}x = \frac{r_{t}}{\theta_{1} + 2_{\theta} + 3\theta_{3}};a = \frac{r_{\infty}}{\theta_{1} + 2\theta_{2} + 3\theta_{3}}

k=1tIn[aax]=1tIn[rrrt]k = \frac{1}{t}In\left\lbrack \frac{a}{a - x} \right\rbrack = \frac{1}{t}In\left\lbrack \frac{r_{\infty}}{r_{\infty} - r_{t}} \right\rbrack