Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

For a first order reaction, APA\rightarrow P, the temperature (T)(T) dependent rate constant (k)(k) was found to follow the equation: logk=(2000)1T+6.0log\, k= (-2000)\frac {1}{T}+6.0. The pre-exponential factor AA and the activation energy EaE_a, respectively, are

A

1.0×106s11.0\times10^6 s^{-1} and 9.2kJmol19.2\, kJ mol^{-1}

B

6.06s16.0^6 s^{-1} and 16.6kJmol116.6 \,kJ\, mol^{-1}

C

1.0×106s11.0\times10^6 s^{-1} and 16.6kJmol116.6\, kJ mol^{-1}

D

1.0×106s11.0\times10^6 s^{-1} and 38.3kJmol138.3 \,kJ \,mol^{-1}

Answer

1.0×106s11.0\times10^6 s^{-1} and 38.3kJmol138.3 \,kJ \,mol^{-1}

Explanation

Solution

The logarithmic form of Arrhenius equation is
logk=logAEa2.303RTlog k=log A-\frac{E_a}{2.303 RT}
Given, logk=62000Tlog k=6-\frac{2000}{T}
Comparing the above two equations :
logA=6A=106log A=6\Rightarrow A=10^6
and Ea2.303R=2000\frac{E_a}{2.303 R}=2000
Ea=2000×2.303×8.314J\Rightarrow E_a=2000\times2.303\times8.314 J
=38.3kJmol1=38.3 kJ mol^{-1}