Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

For a first order gas phase reaction- A(g)2B(g)+C(g)A_{\left(g\right)} \to 2B_{\left(g\right)} + C_{\left(g\right)} P be initial pressure of A and P the total pressure at time 't'. Integrated rate equation is

A

2.303tlog(P0P0Pt÷)\frac{2.303}{t}log \left(\frac{P_{0}}{P_{0}-P ^{\div}_{t}}\right)

B

2.303tlog(2P03P0Pt÷)\frac{2.303}{t}log \left(\frac{2P_{0}}{3P_{0}-P^{\div}_{t}}\right)

C

2.303tlog(P02P0Pt÷)\frac{2.303}{t}log \left(\frac{P_{0}}{2P_{0}-P^{\div}_{t}}\right)

D

2.303tlog(2P02P0Pt÷)\frac{2.303}{t}log \left(\frac{2P_{0}}{2P_{0}-P^{\div}_{t}}\right)

Answer

2.303tlog(2P03P0Pt÷)\frac{2.303}{t}log \left(\frac{2P_{0}}{3P_{0}-P^{\div}_{t}}\right)

Explanation

Solution

Initial : A(g)2B(g)+C(g) P000 P0P2PP\begin{matrix}A_{\left(g\right)}&\to&2B_{\left(g\right)}&+&C_{\left(g\right)}\\\ P_{0}&&0&&0\\\ P_{0}-P&&2P&&P\end{matrix} Total pressure at time (t)=P0P+2P+P=Pt(t) = P_{0} - P + 2P + P = P_t Pt=P0+2P\Rightarrow P_{t} = P_{0} + 2P Pt=P0+2P P_{t} = P_{0} + 2P P=PtP02\Rightarrow P=\frac{P_{t}-P_{0}}{2} k=2.303tlog[P0P0P]k=\frac{2.303}{t}log\left[\frac{P_{0}}{P_{0}-P}\right] =2.303tlog[P0P0(PtP02÷)]=\frac{2.303}{t}log\left[\frac{P_{0}}{P_{0}-\left(\frac{P_{t}-P_{0}}{2}\div\right)}\right] =2.303tlog(2P02P0Pt+P0)=\frac{2.303}{t}log\left(\frac{2P_{0}}{2P_{0}-P_{t}+P_{0}}\right) =2.303tlog(2P03P0Pt)=\frac{2.303}{t}log\left(\frac{2P_{0}}{3P_{0}-P_{t}}\right)