Solveeit Logo

Question

Mathematics Question on Differential equations

For a differentiable function f:RRf : \mathbb{R} \to \mathbb{R}, suppose f(x)=3f(x)+α,f'(x) = 3f(x) + \alpha, where αR\alpha \in \mathbb{R}, f(0)=1f(0) = 1, and limxf(x)=7.\lim_{x \to -\infty} f(x) = 7. Then 9f(log23)9f(-\log_2 3) is equal to __________ .

Answer

Given the differential equation:

dydx3y=α\frac{dy}{dx} - 3y = \alpha

Let the integrating factor be:

I=e3dx=e3xI = e^{\int -3dx} = e^{-3x}

Multiplying through by the integrating factor:

ye3x=e3xαdxy \cdot e^{-3x} = \int e^{-3x} \cdot \alpha dx

Solving for yy:

ye3x=αe3x3+Cy \cdot e^{-3x} = \frac{\alpha e^{-3x}}{-3} + C

Multiplying through by e3xe^{3x}:

y=α3+Ce3xy = \frac{\alpha}{-3} + C \cdot e^{3x}

Using the initial condition x=0,y=1x = 0, y = 1:

1=α3+Ce01 = \frac{\alpha}{-3} + C \cdot e^0

C=1+α3C = 1 + \frac{\alpha}{3}

As x,y7x \to -\infty, y \to 7:

y=76e3xy = 7 - 6e^{3x}

Finally, evaluating:

9f(log3)=619f(-\log 3) = 61