Solveeit Logo

Question

Physics Question on Oscillations

For a damped harmonic oscillator of mass 250g250\,g , the values of spring constant (k)(k) and damping constant (b)(b) are 85N/m85\, N/m and 70g/s70\,g/s , respectively. What is the period of motion ?

A

2.5s2.5\,s

B

5.0s5.0\,s

C

0.34s0.34\,s

D

7.2s7.2\,s

Answer

0.34s0.34\,s

Explanation

Solution

Given, mass of damped harmonic oscillator
m=250g=2501000kgm = 250\,g = \frac{250}{1000} \,kg
=14kg= \frac{1}{4} kg
Spring constant (k)=85Nm1(k) = 85 \,Nm^{-1}
Damping constant (b)=70gs1=0.07kgs1(b) = 70 \,gs^{-1} = 0.07 \,kgs^{-1}
Frequency of damped oscillator
f=12nkmb24m2f = \frac{1}{2n} \sqrt{\frac{k}{m} -\frac{b^{2}}{4m^{2}}}
=12×3.1485140.07×0.074×14×14= \frac{1}{2\times3.14}\sqrt{\frac{85}{\frac{1}{4}}-0.07\times\frac{0.07}{4\times\frac{1}{4}\times \frac{1}{4}}}
=12×3.143400.0196= \frac{1}{ 2\times 3.14} \sqrt{340 - 0.0196}
=12×3.14×18.43= \frac{1}{2\times 3.14} \times18.43
=2.93= 2.93
Now T=1f=12.93T = \frac{1}{f} = \frac{1}{2.93}
=0.34s= 0.34 \,s