Solveeit Logo

Question

Question: For a continuous series the mode is computed by the formula...

For a continuous series the mode is computed by the formula

A

l+fm1fmfm1fm+1×Cl + \frac { f _ { m - 1 } } { f _ { m } - f _ { m - 1 } - f _ { m + 1 } } \times C or l+(f1fmf1f2)×il + \left( \frac { f _ { 1 } } { f _ { m } - f _ { 1 } - f _ { 2 } } \right) \times i

B

l=fmfm1fmfm1fm+1×Cl = \frac { f _ { m } - f _ { m - 1 } } { f _ { m } - f _ { m - 1 } - f _ { m + 1 } } \times C or l+fmf1fmf1f2×il + \frac { f _ { m } - f _ { 1 } } { f _ { m } - f _ { 1 } - f _ { 2 } } \times i

C

l+fmfm12fmfm1fm+1×Cl + \frac { f _ { m } - f _ { m - 1 } } { 2 f _ { m } - f _ { m - 1 } - f _ { m + 1 } } \times C or l+fmf12fmf1f2×il + \frac { f _ { m } - f _ { 1 } } { 2 f _ { m } - f _ { 1 } - f _ { 2 } } \times i

D

l+2fmfm1fmfm1fm+1×Cl + \frac { 2 f _ { m } - f _ { m - 1 } } { f _ { m } - f _ { m - 1 } - f _ { m + 1 } } \times C or l+2fmf1fmf1f2×il + \frac { 2 f _ { m } - f _ { 1 } } { f _ { m } - f _ { 1 } - f _ { 2 } } \times i

Answer

l+fmfm12fmfm1fm+1×Cl + \frac { f _ { m } - f _ { m - 1 } } { 2 f _ { m } - f _ { m - 1 } - f _ { m + 1 } } \times C or l+fmf12fmf1f2×il + \frac { f _ { m } - f _ { 1 } } { 2 f _ { m } - f _ { 1 } - f _ { 2 } } \times i