Solveeit Logo

Question

Question: For a certain equilibrium over the temperature range 500–700 K, the equilibrium constant obeys the e...

For a certain equilibrium over the temperature range 500–700 K, the equilibrium constant obeys the equation

logKp=30.16.36×103T5.7logT.\log K_p = 30.1 - \frac{6.36\times10^3}{T} - 5.7\,\log T.

Find ΔH\Delta H and ΔS\Delta S at T=600T=600 K. Then express ΔH\Delta H in the form A+BTA + B\,T and determine the values of AA and BB.

Answer

ΔH=A+BT\Delta H = A + B\,T with
A=8.314  (6.36×103)(2.303)1.2185×105 Jmol1A = 8.314\;(6.36\times10^3)\,(2.303) \approx 1.2185\times10^5\ \mathrm{J\,mol^{-1}},
B=5.7(8.314)47.4 JK1mol1B = 5.7\,(8.314)\approx 47.4\ \mathrm{J\,K^{-1}\,mol^{-1}}.
At T=600T=600 K:
ΔH=1.2185×105+(47.4)(600)1.5029×105 Jmol1\Delta H = 1.2185\times10^5 + (47.4)(600) \approx 1.5029\times10^5\ \mathrm{J\,mol^{-1}},
ΔS320.7 JK1mol1\Delta S \approx 320.7\ \mathrm{J\,K^{-1}\,mol^{-1}}.

Explanation

Solution

Key relations

  • lnKp=ln(10)(30.16360T5.7logT)\ln K_p = \ln(10)\,\bigl(30.1 - \tfrac{6360}{T} - 5.7\,\log T\bigr)
  • ΔH=Rd(lnKp)d(1/T)\displaystyle \Delta H = -R\,\frac{d(\ln K_p)}{d(1/T)}
  • ΔG=RTlnKp=ΔHTΔS\Delta G = -RT\ln K_p = \Delta H - T\Delta S

Step 1: Compute ΔH\Delta H as a function of TT

d(lnKp)d(1/T)=ln(10)[6360+5.7T],\frac{d(\ln K_p)}{d(1/T)} = \ln(10)\,\Bigl[6360 + 5.7\,T\Bigr],

so

ΔH=Rln(10)[6360+5.7T]=R(6360)ln10A  +  R(5.7)BT.\Delta H = R\,\ln(10)\,\bigl[6360 + 5.7\,T\bigr] = \underbrace{R\,(6360)\,\ln10}_{A} \;+\;\underbrace{R\,(5.7)}_{B}\,T.

Thus

A=8.314×6360×2.3031.2185×105 J/mol,B=5.7×8.31447.4 J/Kmol.A = 8.314\times6360\times2.303 \approx 1.2185\times10^5\ \mathrm{J/mol},\quad B = 5.7\times8.314 \approx 47.4\ \mathrm{J/K\,mol}.

Step 2: Evaluate ΔH\Delta H at T=600T=600 K

ΔH=1.2185×105+47.4×6001.5029×105 J/mol.\Delta H = 1.2185\times10^5 + 47.4\times600 \approx 1.5029\times10^5\ \mathrm{J/mol}.

Step 3: Compute ΔS\Delta S
First, logKp=30.163606005.7log(600)=3.67\log K_p=30.1 - \tfrac{6360}{600}-5.7\log(600)=3.67.
So lnKp=2.303×3.678.45\ln K_p = 2.303\times3.67 \approx 8.45. Then

ΔG=RTlnKp=8.314×600×8.454.2145×104 J/mol,\Delta G = -RT\ln K_p = -8.314\times600\times8.45 \approx -4.2145\times10^4\ \mathrm{J/mol},

and from ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S:

ΔS=ΔHΔGT=1.5029×105(4.2145×104)600320.7 J/Kmol.\Delta S = \frac{\Delta H - \Delta G}{T} = \frac{1.5029\times10^5 - (-4.2145\times10^4)}{600} \approx 320.7\ \mathrm{J/K\,mol}.