Question
Question: For a certain equilibrium over the temperature range 500–700 K, the equilibrium constant obeys the e...
For a certain equilibrium over the temperature range 500–700 K, the equilibrium constant obeys the equation
logKp=30.1−T6.36×103−5.7logT.Find ΔH and ΔS at T=600 K. Then express ΔH in the form A+BT and determine the values of A and B.
Answer
ΔH=A+BT with
A=8.314(6.36×103)(2.303)≈1.2185×105 Jmol−1,
B=5.7(8.314)≈47.4 JK−1mol−1.
At T=600 K:
ΔH=1.2185×105+(47.4)(600)≈1.5029×105 Jmol−1,
ΔS≈320.7 JK−1mol−1.
Explanation
Solution
Key relations
- lnKp=ln(10)(30.1−T6360−5.7logT)
- ΔH=−Rd(1/T)d(lnKp)
- ΔG=−RTlnKp=ΔH−TΔS
Step 1: Compute ΔH as a function of T
d(1/T)d(lnKp)=ln(10)[6360+5.7T],so
ΔH=Rln(10)[6360+5.7T]=AR(6360)ln10+BR(5.7)T.Thus
A=8.314×6360×2.303≈1.2185×105 J/mol,B=5.7×8.314≈47.4 J/Kmol.Step 2: Evaluate ΔH at T=600 K
ΔH=1.2185×105+47.4×600≈1.5029×105 J/mol.Step 3: Compute ΔS
First, logKp=30.1−6006360−5.7log(600)=3.67.
So lnKp=2.303×3.67≈8.45. Then
and from ΔG=ΔH−TΔS:
ΔS=TΔH−ΔG=6001.5029×105−(−4.2145×104)≈320.7 J/Kmol.