Solveeit Logo

Question

Question: For a bivariate distribution (x, y) if \(\sum_{}^{}{x = 50}\), \(\sum_{}^{}{y = 60}\), \(\sum_{}^{}{...

For a bivariate distribution (x, y) if x=50\sum_{}^{}{x = 50}, y=60\sum_{}^{}{y = 60}, xy=350,x=5,y=6\sum_{}^{}{xy} = 350,\overline{x} = 5,\overline{y} = 6 variance of x is 4, variance of y is 9, then r(x,y)r(x,y) is

A

5/6

B

5/36

C

11/3

D

11/18

Answer

5/6

Explanation

Solution

x=xn\overline{x} = \frac{\sum_{}^{}x}{n}5=50n5 = \frac{50}{n}n=10n = 10.

Cov(x,y)=xynx.y=35010(5)(6)Cov(x,y) = \frac{\sum_{}^{}xy}{n} - \overline{x}.\overline{y} = \frac{350}{10} - (5)(6) = 5.

r(x,y)=Cov(x,y)σx.σy=54.9r(x,y) = \frac{Cov(x,y)}{\sigma_{x}.\sigma_{y}} = \frac{5}{\sqrt{4}.\sqrt{9}} =56\frac{5}{6}.