Solveeit Logo

Question

Mathematics Question on Matrices

For a,b>0a, b > 0, if P=[0a 2ab]P = \begin{bmatrix} 0 & -a \\\ 2a & b \end{bmatrix} and Q=[ba b0]Q = \begin{bmatrix} b & a \\\ -b & 0 \end{bmatrix} are two matrices such that PQ=[20 38]PQ = \begin{bmatrix} 2 & 0 \\\ 3 & 8 \end{bmatrix}, then the value of (a+b)ab(a + b)^{ab} is:

A

8

B

9

C

19\frac{1}{9}

D

127-\frac{1}{27}

Answer

9

Explanation

Solution

Compute the product PQPQ:

PQ=[0a 2ab][ba b0]PQ = \begin{bmatrix} 0 & -a \\\ 2a & b \end{bmatrix} \cdot \begin{bmatrix} b & a \\\ -b & 0 \end{bmatrix}.

Perform the matrix multiplication:

PQ=[(0)(b)+(a)(b)(0)(a)+(a)(0) (2a)(b)+(b)(b)(2a)(a)+(b)(0)]PQ = \begin{bmatrix} (0)(b) + (-a)(-b) & (0)(a) + (-a)(0) \\\ (2a)(b) + (b)(-b) & (2a)(a) + (b)(0) \end{bmatrix}.

Simplify:

PQ=[ab0 2abb22a2]PQ = \begin{bmatrix} ab & 0 \\\ 2ab - b^2 & 2a^2 \end{bmatrix}.

Equating PQPQ to [20 38]\begin{bmatrix} 2 & 0 \\\ 3 & 8 \end{bmatrix}, we get:

ab=2ab = 2, 2abb2=32ab - b^2 = 3, 2a2=82a^2 = 8.

From 2a2=82a^2 = 8, solve for aa:

a2=4    a=2(as a>0)a^2 = 4 \implies a = 2 \quad \text{(as } a > 0 \text{)}.

Substitute a=2a = 2 into ab=2ab = 2:

2b=2    b=12b = 2 \implies b = 1.

Now calculate (a+b)ab(a + b)^{ab}: a+b=2+1=3a + b = 2 + 1 = 3, ab=(2)(1)=2ab = (2)(1) = 2.
(a+b)ab=32=9(a + b)^{ab} = 3^2 = 9.
Thus, the value of (a+b)ab(a + b)^{ab} is 9.