Question
Mathematics Question on Matrices
For a,b>0, if P=[0 2a−ab] and Q=[b −ba0] are two matrices such that PQ=[2 308], then the value of (a+b)ab is:
A
8
B
9
C
91
D
−271
Answer
9
Explanation
Solution
Compute the product PQ:
PQ=[0 2a−ab]⋅[b −ba0].
Perform the matrix multiplication:
PQ=[(0)(b)+(−a)(−b) (2a)(b)+(b)(−b)(0)(a)+(−a)(0)(2a)(a)+(b)(0)].
Simplify:
PQ=[ab 2ab−b202a2].
Equating PQ to [2 308], we get:
ab=2, 2ab−b2=3, 2a2=8.
From 2a2=8, solve for a:
a2=4⟹a=2(as a>0).
Substitute a=2 into ab=2:
2b=2⟹b=1.
Now calculate (a+b)ab: a+b=2+1=3, ab=(2)(1)=2.
(a+b)ab=32=9.
Thus, the value of (a+b)ab is 9.