Solveeit Logo

Question

Multivariable Calculus Question on Functions of Two or Three Real Variables

For a > b > 0, consider
D=\left\\{(x,y,z) \in \R^3 :x^2+y^2+z^2 \le a^2\ \text{and } x^2+y^2 \ge b^2\right\\}.
Then, the surface area of the boundary of the solid D is

A

4π(a+b)a2b24\pi(a+b)\sqrt{a^2-b^2}

B

4π(a2ba2b2)4\pi(a^2-b\sqrt{a^2-b^2})

C

4π(ab)a2b24\pi(a-b)\sqrt{a^2-b^2}

D

4π(a2+ba2b2)4\pi(a^2+b\sqrt{a^2-b^2})

Answer

4π(a+b)a2b24\pi(a+b)\sqrt{a^2-b^2}

Explanation

Solution

The correct option is (A) : 4π(a+b)a2b24\pi(a+b)\sqrt{a^2-b^2}.