Question
Multivariable Calculus Question on Functions of Two or Three Real Variables
For a > b > 0, consider
D=\left\\{(x,y,z) \in \R^3 :x^2+y^2+z^2 \le a^2\ \text{and } x^2+y^2 \ge b^2\right\\}.
Then, the surface area of the boundary of the solid D is
A
4π(a+b)a2−b2
B
4π(a2−ba2−b2)
C
4π(a−b)a2−b2
D
4π(a2+ba2−b2)
Answer
4π(a+b)a2−b2
Explanation
Solution
The correct option is (A) : 4π(a+b)a2−b2.