Solveeit Logo

Question

Question: For a $3 \times 3$ invertible matrix $A$ satisfying the characteristic equation $A^3+pA^2+qA-rI_3=0$...

For a 3×33 \times 3 invertible matrix AA satisfying the characteristic equation A3+pA2+qArI3=0A^3+pA^2+qA-rI_3=0, which of the following is/are true [Here tr(A)=trace of matrix Atr(A) = \text{trace of matrix } A, det(A)=determinant value of matrix Adet(A) = \text{determinant value of matrix } A]

A

p = -tr(A)

B

q = \frac{(tr(A))^2 - tr(A^2)}{2}

C

r = det(A)

D

A^{-1} = \frac{-2(A - tr(A) I_3)}{(tr(A))^2 - tr(A^2)}

Answer

p = -tr(A), q = \frac{(tr(A))^2 - tr(A^2)}{2}, r = det(A)

Explanation

Solution

Using the Cayley–Hamilton theorem for a 3×33\times3 matrix AA, its characteristic polynomial is

χA(λ)=λ3(trA)λ2+qλdetA.\chi_A(\lambda)=\lambda^3 - \bigl(\mathrm{tr}\,A\bigr)\lambda^2+q\,\lambda - \det A.

By Cayley–Hamilton, A3(trA)A2+qA(detA)I3=0A^3 - (\mathrm{tr}\,A)A^2 + q\,A - (\det A)\,I_3=0.

  1. Comparing with A3+pA2+qArI3=0A^3 + pA^2 + qA - rI_3=0 gives
    • p=trAp = -\,\mathrm{tr}\,A.
  2. The coefficient qq equals the sum of principal 2×22\times2 minors of AA, which satisfies q=(trA)2tr(A2)2.q = \frac{(\mathrm{tr}\,A)^2 - \mathrm{tr}(A^2)}{2}.
  3. The constant term rr equals detA\det A.
  4. One can also solve for A1A^{-1} from the CH relation: 0=A3(trA)A2+qAdet(A)I3    A1=A2(trA)A+qI3detA,0 = A^3 - (\mathrm{tr}\,A)A^2 + qA - \det(A)\,I_3 \;\Longrightarrow\; A^{-1} = \frac{A^2 - (\mathrm{tr}\,A)\,A + q\,I_3}{\det A}, which is not the form given in option D. Hence D is false.