Solveeit Logo

Question

Question: For A = \(133^{o},2\cos\frac{A}{2}\) is equal to...

For A = 133o,2cosA2133^{o},2\cos\frac{A}{2} is equal to

A

1+sinA1sinA- \sqrt{1 + \sin A} - \sqrt{1 - \sin A}

B

1+sinA+1sinA- \sqrt{1 + \sin A} + \sqrt{1 - \sin A}

C

1+sinA1sinA\sqrt{1 + \sin A} - \sqrt{1 - \sin A}

D

1+sinA+1sinA\sqrt{1 + \sin A} + \sqrt{1 - \sin A}

Answer

1+sinA1sinA\sqrt{1 + \sin A} - \sqrt{1 - \sin A}

Explanation

Solution

For A=133o,A2=66.5oA = 133^{o},\frac{A}{2} = 66.5^{o}sinA2cosA2\sin\frac{A}{2\cos\frac{A}{2}}

Hence, 1+sinA=sinA2+cosA2\sqrt{1 + \sin A} = \sin\frac{A}{2} + \cos\frac{A}{2} ......(i) and

1sinA=sinA2cosA2\sqrt{1 - \sin A} = \sin\frac{A}{2} - \cos\frac{A}{2} ......(ii)

Subtract (ii) from (i) we get, 2cosA2=1+sinA1sinA2\cos\frac{A}{2} = \sqrt{1 + \sin A} - \sqrt{1 - \sin A}.