Question
Mathematics Question on Continuity and differentiability
For a>0,t∈(0,2π), let x=asin−1t and y=acos−1t, Then 1+(dxdy)2 equals :
A
y2x2
B
x2y2
C
y2x2+y2
D
x2x2+y2
Answer
x2x2+y2
Explanation
Solution
Let x=asin−1t ⇒x2=asin−1t⇒2logx=sin−1t.loga ⇒x2=1−t2loga.dxdt ⇒xloga21−t2=dxdt ....(1) Now, let y=acos−1t ⇒2logy=cos−1t.loga ⇒y2.dxdy=1−t2−loga.dxdt ⇒y2.dxdy=1−t2−loga×xloga21−t2 (from (1) ⇒dxdy=−xy Hence , 1+(dxdy)2=1+(x−y)2=x2x2+y2