Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

For a>0,t(0,π2),a > 0 , t \in\left(0, \frac{\pi}{2}\right) , let x=asin1tx = \sqrt{a^{\sin^{-1}t}} and y=acos1t,y = \sqrt{a^{\cos^{-1}t}}, Then 1+(dydx)21+ \left(\frac{dy}{dx}\right)^{2} equals :

A

x2y2\frac{x^2}{y^2}

B

y2x2\frac{y^2}{x^2}

C

x2+y2y2\frac{x^2 + y^2 }{y^2}

D

x2+y2x2\frac{x^2 + y^2 }{x^2}

Answer

x2+y2x2\frac{x^2 + y^2 }{x^2}

Explanation

Solution

Let x=asin1tx = \sqrt{a^{\sin^{-1}t }} x2=asin1t2logx=sin1t.loga\Rightarrow x^{2} = a^{\sin^{-1}t} \Rightarrow 2 \log x = \sin^{-1} t . \log a 2x=loga1t2.dtdx\Rightarrow \frac{2}{x} = \frac{\log a}{\sqrt{1-t^{2}}} . \frac{dt}{dx} 21t2xloga=dtdx\Rightarrow \frac{2\sqrt{1-t^{2}}}{x \log a} = \frac{dt}{dx} ....(1) Now, let y=acos1ty = \sqrt{a^{\cos^{-1}t}} 2logy=cos1t.loga\Rightarrow 2 \log y = \cos^{-1} t . \log a 2y.dydx=loga1t2.dtdx\Rightarrow \frac{2}{y} . \frac{dy}{dx} = \frac{-\log a}{\sqrt{1-t^{2}}} . \frac{dt}{dx} 2y.dydx=loga1t2×21t2xloga\Rightarrow \frac{2}{y} . \frac{dy}{dx} = \frac{-\log a}{\sqrt{1-t^{2}} } \times \frac{2\sqrt{1-t^{2}}}{x \log a} (from (1) dydx=yx\Rightarrow \frac{dy}{dx} = - \frac{y}{x} Hence , 1+(dydx)2=1+(yx)2=x2+y2x21+ \left(\frac{dy}{dx}\right)^{2} = 1 + \left(\frac{-y}{x}\right)^{2} = \frac{x^{2} +y^{2}}{x^{2}}