Solveeit Logo

Question

Mathematics Question on applications of integrals

For a>0a > 0, let the curves C1:y2=axC_1 : y^2 = ax and C2:x2=ayC_2 : x^2= ay intersect at origin O and a point P. Let the line x=b(0<b<a)x = b (0 < b < a) intersect the chord OP and the x-axis at points Q and R, respectively. If the line x = b bisects the area bounded by the curves, C1C_1 and C2C_2, and the area of ΔOQR=12,\Delta OQR = \frac{1}{2}, then 'a' satisfies the equation :

A

x612x3+4=0x^6 - 12x^3 + 4 = 0

B

x612x34=0x^6 - 12x^3 - 4 = 0

C

x6+6x34=0x^6 + 6x^3 - 4 = 0

D

x66x3+4=0x^6 - 6x^3 + 4 = 0

Answer

x612x3+4=0x^6 - 12x^3 + 4 = 0

Explanation

Solution

0b\int\limits^{b}_{{0}} (axx2a)dx=12×16(a4)(a4)3\left(\sqrt{ax}-\frac{x^{2}}{a}\right)dx=\frac{1}{2}\times \frac{16\left(\frac{a}{4}\right)\left(\frac{a}{4}\right)}{3}
[2a3x3/2x33a]0b=a26\Rightarrow \left[\frac{2\sqrt{a}}{3}x^{3/2}-\frac{x^{3}}{3a}\right]^{b}_{_{_0}}=\frac{a^{2}}{6}
2a3b3/2b33a=a26...(i)\Rightarrow \frac{2\sqrt{a}}{3}b^{3/2}-\frac{b^{3}}{3a}=\frac{a^{2}}{6}\,...\left(i\right)
Also, 12×b2=12b=1\frac{1}{2}\times b^{2}=\frac{1}{2} \Rightarrow b=1
so, 2a313a=a26a34a3/2+2=0\frac{2\sqrt{a}}{3}-\frac{1}{3a}=\frac{a^{2}}{6} \Rightarrow a^{3}-4a^{3/2}+2=0
a6+4a3+4=16a3a612a3+4=0\Rightarrow a^{6}+4a^{3}+4=16a^{3} \Rightarrow a^{6}-12a^{3}+4=0