Question
Question: For \[2 \times 3\] matrix \[A = \left[ {{a_{ij}}} \right]\] whose elements are given by \[{a_{ij}} =...
For 2×3 matrix A=[aij] whose elements are given by aij=2(i+j)2 then A is equal to
A. \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&8&{\dfrac{9}{2}}
\end{array} \\\
\begin{array}{*{20}{c}}
8&{\dfrac{9}{2}}&{\dfrac{{25}}{2}}
\end{array} \\\
\end{gathered} \right]
B. \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\\
\end{gathered} \right]
C. \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\\
\begin{array}{*{20}{c}}
8&{\dfrac{9}{2}}&{\dfrac{{25}}{2}}
\end{array} \\\
\end{gathered} \right]
D. \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{{25}}{2}}&8
\end{array} \\\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&{\dfrac{9}{2}}&8
\end{array} \\\
\end{gathered} \right]
Solution
We use the general method of forming a matrix using the fact that ‘i’ represents the row and ‘j’ represents the column of the matrix. An element aijis calculated by substituting values of respective row and column into the formula. From a matrix with calculated values and check which option matches the matrix.
- A matrix of order m×ntells us there are m rows and n columns for the matrix.
Step-By-Step answer:
We are given a matrix A of order 2×3
For a matrix A, with 2 rows and 3 columns we can write A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{{A_{11}}}&{{A_{12}}}&{{A_{13}}}
\end{array} \\\
\begin{array}{*{20}{c}}
{{A_{21}}}&{{A_{22}}}&{{A_{23}}}
\end{array} \\\
\end{gathered} \right]
We know ‘i’ represents the row and ‘j’ represents the column of the matrix
Also, aij=2(i+j)2gives the value of each element when we substitute value of respective row and column of that element.
Then substitute values of i and j in the matrix A