Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

For 0<θ<π20 < \theta < \frac{\pi}{2}, the solution(s) of m=16cosec(θ+(m1)π4)cosec(θ+mπ4)=42\displaystyle\sum _{m=1}^{6} cosec \Bigg(\theta+\frac{(m-1)\pi}{4}\Bigg)cosec\Bigg(\theta+\frac{m\pi}{4}\Bigg)=4\sqrt{2} is/are

A

π4\frac{\pi}{4}

B

π6\frac{\pi}{6}

C

π12\frac{\pi}{12}

D

5π12\frac{5\pi}{12}

Answer

5π12\frac{5\pi}{12}

Explanation

Solution

For 0<θ<π20 < \theta < \frac{\pi}{2}
m=16cosec(θ+(m1)4)cosec(θ+fracmπ4)=42\displaystyle\sum _{m=1}^{6}cosec\Bigg(\theta+\frac{(m-1)}{4}\Bigg)cosec\Bigg(\theta+frac{m\pi}{4}\Bigg)=4\sqrt{2}
\Rightarrow \hspace25mm \displaystyle\sum _{m=1}^{6}\frac{1}{sin\Big(\theta+\frac{(m-1)\pi}{4}\Big)sin\Big(\theta+\frac{m\pi}{4}\Big)}=4\sqrt{2}
\Rightarrow \displaystyle\sum _{m=1}^{6}\frac{sin\Big[\theta+\frac{m\pi}{4}-\Big(\theta+\frac{(m-1)\pi}{4}\Big)\Big]}{sin\frac{\pi}{4}\Big\\{sin\Big(\theta+\frac{(m-1)\pi}{4}sin\Big(\theta+\frac{m\pi}{4}\Big)\Big\\}}
\Rightarrow \hspace15mm \displaystyle\sum _{m=1}^{6}\frac{cot\Big(\theta+\frac{(m-1)\pi}{4}\Big)-cot\Big(\theta+\frac{m\pi}{4}\Big)}{1/\sqrt{2}}=4\sqrt{2}
\Rightarrow \hspace15mm \displaystyle\sum _{m=1}^{6} \Bigg[cot \Bigg(\theta+\frac{(m-1)\pi}{4}\Bigg)-cot\Bigg(\theta+\frac{m\pi}{4}\Bigg)\Bigg]=4
cot(θ)cot(θ+π4)+cot(θ+π4)cot(θ+2π4)+...+cot(θ+5π4)cot(θ+6π4)=4\Rightarrow cot (\theta)-cot \Bigg(\theta+\frac{\pi}{4}\Bigg)+cot\Bigg(\theta+\frac{\pi}{4}\Bigg)-cot \Bigg(\theta+\frac{2\pi}{4}\Bigg)+...+ cot \Bigg(\theta+\frac{5\pi}{4}\Bigg)-cot \Bigg(\theta+\frac{6\pi}{4}\Bigg)=4
\Rightarrow \hspace25mm cot \theta- cot \Bigg(\frac{3\pi}{2}+\theta\Bigg)=4
\Rightarrow \hspace35mm cot \theta +tan \theta=4
\Rightarrow \hspace25mm tan^2 \theta-4 tan \theta+1=0
\Rightarrow \hspace30mm (tan \theta-2^2)^2-3=0
\Rightarrow \hspace15mm (tan\theta-2\sqrt{3})(tan \theta-2-\sqrt{3})=0
\Rightarrow \hspace35mm tan \theta =2-\sqrt{3}
\Rightarrow \hspace35mm tan \theta =2+\sqrt{3}
\Rightarrow \hspace25mm \theta=\frac{\pi}{12}; \theta=\frac{5\pi}{12}
[θ(0,π2)]\Bigg[ \because \theta \in \Bigg(0, \frac{\pi}{2}\Bigg) \Bigg]