Question
Mathematics Question on Trigonometric Functions
For 0<θ<2π, the solution(s) of m=1∑6cosec(θ+4(m−1)π)cosec(θ+4mπ)=42 is/are
4π
6π
12π
125π
125π
Solution
For 0<θ<2π
m=1∑6cosec(θ+4(m−1))cosec(θ+fracmπ4)=42
\Rightarrow \hspace25mm \displaystyle\sum _{m=1}^{6}\frac{1}{sin\Big(\theta+\frac{(m-1)\pi}{4}\Big)sin\Big(\theta+\frac{m\pi}{4}\Big)}=4\sqrt{2}
\Rightarrow \displaystyle\sum _{m=1}^{6}\frac{sin\Big[\theta+\frac{m\pi}{4}-\Big(\theta+\frac{(m-1)\pi}{4}\Big)\Big]}{sin\frac{\pi}{4}\Big\\{sin\Big(\theta+\frac{(m-1)\pi}{4}sin\Big(\theta+\frac{m\pi}{4}\Big)\Big\\}}
\Rightarrow \hspace15mm \displaystyle\sum _{m=1}^{6}\frac{cot\Big(\theta+\frac{(m-1)\pi}{4}\Big)-cot\Big(\theta+\frac{m\pi}{4}\Big)}{1/\sqrt{2}}=4\sqrt{2}
\Rightarrow \hspace15mm \displaystyle\sum _{m=1}^{6} \Bigg[cot \Bigg(\theta+\frac{(m-1)\pi}{4}\Bigg)-cot\Bigg(\theta+\frac{m\pi}{4}\Bigg)\Bigg]=4
⇒cot(θ)−cot(θ+4π)+cot(θ+4π)−cot(θ+42π)+...+cot(θ+45π)−cot(θ+46π)=4
\Rightarrow \hspace25mm cot \theta- cot \Bigg(\frac{3\pi}{2}+\theta\Bigg)=4
\Rightarrow \hspace35mm cot \theta +tan \theta=4
\Rightarrow \hspace25mm tan^2 \theta-4 tan \theta+1=0
\Rightarrow \hspace30mm (tan \theta-2^2)^2-3=0
\Rightarrow \hspace15mm (tan\theta-2\sqrt{3})(tan \theta-2-\sqrt{3})=0
\Rightarrow \hspace35mm tan \theta =2-\sqrt{3}
\Rightarrow \hspace35mm tan \theta =2+\sqrt{3}
\Rightarrow \hspace25mm \theta=\frac{\pi}{12}; \theta=\frac{5\pi}{12}
[∵θ∈(0,2π)]