Solveeit Logo

Question

Mathematics Question on Conic sections

For 0<θ<pi20 < \theta < \frac{pi}{2}, if the eccentricity of the hyperbola x2y2csc2θ=5x^2 - y^2 \csc^2 \theta = 5 is 7\sqrt{7} times the eccentricity of the ellipse x2csc2θ+y2=5x^2 \csc^2 \theta + y^2 = 5, then the value of θ\theta is:

A

π6\frac{\pi}{6}

B

5π12\frac{5\pi}{12}

C

π3\frac{\pi}{3}

D

π4\frac{\pi}{4}

Answer

π3\frac{\pi}{3}

Explanation

Solution

For the hyperbola, the eccentricity is given by:

eh=1+sin2θe_h = \sqrt{1 + \sin^2 \theta}

For the ellipse, the eccentricity is given by:

ee=1sin2θe_e = \sqrt{1 - \sin^2 \theta}

We are given that the eccentricity of the hyperbola is 7\sqrt{7} times the eccentricity of the ellipse:

eh=7eee_h = \sqrt{7} \cdot e_e

Substituting the expressions for ehe_h and eee_e:

1+sin2θ=71sin2θ\sqrt{1 + \sin^2 \theta} = \sqrt{7} \cdot \sqrt{1 - \sin^2 \theta}

Squaring both sides:

1+sin2θ=7(1sin2θ)1 + \sin^2 \theta = 7(1 - \sin^2 \theta)

Expanding:

1+sin2θ=77sin2θ1 + \sin^2 \theta = 7 - 7 \sin^2 \theta

Simplifying:

1+sin2θ+7sin2θ=71 + \sin^2 \theta + 7 \sin^2 \theta = 7

8sin2θ=68 \sin^2 \theta = 6

sin2θ=34\sin^2 \theta = \frac{3}{4}

Thus:

sinθ=32\sin \theta = \frac{\sqrt{3}}{2}

Therefore:

θ=π3\theta = \frac{\pi}{3}