Solveeit Logo

Question

Question: For \(0 < \theta < \dfrac{\pi }{2}\), the solution of \(\sum\limits_{m = 1}^6 {{\text{cosec}}\left( ...

For 0<θ<π20 < \theta < \dfrac{\pi }{2}, the solution of m=16cosec(θ+(m1)π4)cosec(θ+mπ4)=42\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 is/are?
(a)π4\left( a \right)\dfrac{\pi }{4}
(b)π6\left( b \right)\dfrac{\pi }{6}
(c)π12\left( c \right)\dfrac{\pi }{{12}}
(d)5π12\left( d \right)\dfrac{{5\pi }}{{12}}

Explanation

Solution

In this particular question use the concept that cosec x = (1/sin x), then expand the summation and use the property that 1sinxsin(x+a)=1sina[cotxcot(x+a)]\dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right], so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given expression
m=16cosec(θ+(m1)π4)cosec(θ+mπ4)=42\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 , for 0<θ<π20 < \theta < \dfrac{\pi }{2}
Now we have to find out the values of θ\theta
As we know that cosec x = (1/sin x) so use this property in the above expression we have,
m=161sin(θ+(m1)π4)sin(θ+mπ4)=42\Rightarrow \sum\limits_{m = 1}^6 {\dfrac{1}{{\sin \left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{m\pi }}{4}} \right)}}} = 4\sqrt 2
Now expand the summation we have,
1sinθsin(θ+π4)+1sin(θ+π4)sin(θ+2π4)+...........+1sin(θ+5π4)sin(θ+6π4)=42\Rightarrow \dfrac{1}{{\sin \theta \sin \left( {\theta + \dfrac{\pi }{4}} \right)}} + \dfrac{1}{{\sin \left( {\theta + \dfrac{\pi }{4}} \right)\sin \left( {\theta + \dfrac{{2\pi }}{4}} \right)}} + ........... + \dfrac{1}{{\sin \left( {\theta + \dfrac{{5\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{6\pi }}{4}} \right)}} = 4\sqrt 2..... (1)
Now, simplify the above expression using the property which is given as,
1sinxsin(x+a)=1sina[sin(x+ax)sinxsin(x+a)]\Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a - x} \right)}}{{\sin x\sin \left( {x + a} \right)}}} \right]
1sinxsin(x+a)=1sina[sin(x+a)cosxcos(x+a)sinxsinxsin(x+a)]\Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a} \right)\cos x - \cos \left( {x + a} \right)\sin x}}{{\sin x\sin \left( {x + a} \right)}}} \right], [sin(AB)=sinAcosBcosAsinB]\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]
Now simplify we have,
1sinxsin(x+a)=1sina[cosxsinxcos(x+a)sin(x+a)]\Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\cos x}}{{\sin x}} - \dfrac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}} \right]
1sinxsin(x+a)=1sina[cotxcot(x+a)]\Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right], where cot x = (cos x/sin x)
So use this property in equation (1), where a = π4\dfrac{\pi }{4} so we have,
1sinπ4[cotθcot(θ+π4)+cot(θ+π4)cot(θ+2π4)+......+cot(θ+5π4)cot(θ+6π4)]=42\Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{\pi }{4}} \right) + \cot \left( {\theta + \dfrac{\pi }{4}} \right) - \cot \left( {\theta + \dfrac{{2\pi }}{4}} \right) + ...... + \cot \left( {\theta + \dfrac{{5\pi }}{4}} \right) - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2
So as we see that except first and last term all the terms are cancel out so we have,

1sinπ4[cotθcot(θ+6π4)]=42\Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2
1sinπ4[cotθcot(θ+3π2)]=42\Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{3\pi }}{2}} \right)} \right] = 4\sqrt 2
1sinπ4[cotθcot(π+(θ+π2))]=42\Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\pi + \left( {\theta + \dfrac{\pi }{2}} \right)} \right)} \right] = 4\sqrt 2
Now as we know that cot(π+x)=cotx\cot \left( {\pi + x} \right) = \cot x, as cot is positive in the third quadrant.
1sinπ4[cotθcot(π2+θ)]=42\Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\dfrac{\pi }{2} + \theta } \right)} \right] = 4\sqrt 2
Now as we know that cot(π2+x)=tanx,sinπ4=12\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} so use this property we have,
112[cotθ+tanθ]=42\Rightarrow \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}\left[ {\cot \theta + \tan \theta } \right] = 4\sqrt 2
[cotθ+tanθ]=4\Rightarrow \left[ {\cot \theta + \tan \theta } \right] = 4
[1tanθ+tanθ]=4\Rightarrow \left[ {\dfrac{1}{{\tan \theta }} + \tan \theta } \right] = 4
tan2θ4tanθ+1=0\Rightarrow {\tan ^2}\theta - 4\tan \theta + 1 = 0
So this is a quadratic equation so apply quadratic formula we have,
tanθ=b±b24ac2a\Rightarrow \tan \theta = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}. Where, a = 1, b = -4, c = 1.
So we have,
tanθ=4±424(1)(1)2(1)=4±122=2±3\Rightarrow \tan \theta = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2} = 2 \pm \sqrt 3
tanθ=(2+3),(23)\Rightarrow \tan \theta = \left( {2 + \sqrt 3 } \right),\left( {2 - \sqrt 3 } \right)
So when, tanθ=(2+3)\tan \theta = \left( {2 + \sqrt 3 } \right)
θ=5π12=75o\Rightarrow \theta = \dfrac{{5\pi }}{{12}} = {75^o}
And when, tanθ=(23)\tan \theta = \left( {2 - \sqrt 3 } \right)
θ=π12=15o\Rightarrow \theta = \dfrac{\pi }{{12}} = {15^o}
So this is the required answer.
Hence options (c) and (d) are the correct answer.

Note :Whenever we face such types of questions the key concept we have to remember is that always recall basic trigonometric identities such as [sin(AB)=sinAcosBcosAsinB]\left[ {\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right], cot(π+x)=cotx\cot \left( {\pi + x} \right) = \cot x, cot(π2+x)=tanx,sinπ4=12\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}, and always recall the formula to solve the complex quadratic equation which is stated above.