Solveeit Logo

Question

Question: For \(0 \leq x \leq \pi\) the area bounded by \(y = x\) and \(y = x + \sin x\) is...

For 0xπ0 \leq x \leq \pi the area bounded by y=xy = x and y=x+sinxy = x + \sin x is

A

2

B

4

C

2π2 \pi

D

4π4 \pi

Answer

2

Explanation

Solution

The curves y=xy = xand y=x+sinxy = x + \sin x intersect at (0, 0) and (π,π)( \pi , \pi ). Hence area bounded by the two curves

=0π(x+sinx)dx0πxdx=0πsinxdx= \int _ { 0 } ^ { \pi } ( x + \sin x ) d x - \int _ { 0 } ^ { \pi } x d x = \int _ { 0 } ^ { \pi } \sin x d x

=[cosx]0π=cosπ+cos0=(1)+(1)=2= [ - \cos x ] _ { 0 } ^ { \pi } = - \cos \pi + \cos 0 = - ( - 1 ) + ( 1 ) = 2.