Solveeit Logo

Question

Mathematics Question on Increasing and Decreasing Functions

For 0p10 \leq p \leq 1 and for any positive a,ba, b let I(p)=(a+b)p,J(p)=ap+bpI(p) = (a + b)^p, J(p) = a^p + b^p, then

A

I(p)>J(p)I (p) > J (p)

B

I(p)J(p)I (p) \leq J (p)

C

I(p)<J(p)I(p) < J(p) in [0,P2][0, \frac{P}{2} ] & I(p)>J(p)I(p) > J(p) in [P2,)[\frac{P}{2} , \infty )

D

I(p)<J(p)I(p) < J(p) in [P2,)[\frac{P}{2}, \infty ) & J(p)>I(p)J(p) > I(p) in [0,P2][0, \frac{P}{2}]

Answer

I(p)J(p)I (p) \leq J (p)

Explanation

Solution

Given that;

For any positive a,b; let I(p)=(a+b)b.J(p)=ab+bbI(p)=(a+b)^b. J(p)=a^b+b^b

For 0≤p≤1

Then let us take a=3 , b=4

then p=0.5

i(p)=5;J(p)=7i(p)=5; J(p)=7

J(p)>I(p)\therefore J(p)>I(p)

Now a= ⅓, b= ¼

when p=1

I(p)=712;J(p)=712I(p)= \frac{7}{12}; J(p)=\frac{7}{12}

I(p)=J(p)\therefore I(p)=J(p)

I(p)I(p)J(p)J(p)