Solveeit Logo

Question

Question: For \(0 < c \leqslant \pi ,{\sinh ^{ - 1}}(\cot x) = \) A.\(\log (\cot \frac{x}{2})\) B.\(\log (...

For 0<cπ,sinh1(cotx)=0 < c \leqslant \pi ,{\sinh ^{ - 1}}(\cot x) =
A.log(cotx2)\log (\cot \frac{x}{2})
B.log(tanx2)\log (\tan \frac{x}{2})
C.log(1+cotx)\log (1 + \cot x)
D.log(1+tanx)\log (1 + \tan x)

Explanation

Solution

We know that sinh1x=log(x+1+x2){\sinh ^{ - 1}}x = \log \left( {x + \sqrt {1 + {x^2}} } \right) and now we need to replace x by cot x and simplify using the identities like cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1,cotx=cosxsinx\cot x = \frac{{\cos x}}{{\sin x}} and cosecx=1sinx\cos ecx = \frac{1}{{\sin x}},2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x to obtain the required value.

Complete step-by-step answer:
We are given an inverse hyperbolic function.
We know that sinh1x=log(x+1+x2){\sinh ^{ - 1}}x = \log \left( {x + \sqrt {1 + {x^2}} } \right)
Here we are asked to find sinh1(cotx){\sinh ^{ - 1}}(\cot x)
We have cot x in the place of x
So by applying the formula above we get

sinh1(cotx)=log(cotx+1+(cotx)2) sinh1(cotx)=log(cotx+1+(cot2x))  \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + {{(\cot x)}^2}} } \right) \\\ \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + ({{\cot }^2}x)} } \right) \\\

By the identity cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1
We get, cosec2x=1+cot2x\cos e{c^2}x = 1 + {\cot ^2}x
Therefore ,

sinh1(cotx)=log(cotx+cosec2x) sinh1(cotx)=log(cotx+cosecx)  \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {\cos e{c^2}x} } \right) \\\ \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \cos ecx} \right) \\\

And here we know that cotx=cosxsinx\cot x = \frac{{\cos x}}{{\sin x}}andcosecx=1sinx\cos ecx = \frac{1}{{\sin x}}
Substituting in the above equation, we get

sinh1(cotx)=log(cosxsinx+1sinx) sinh1(cotx)=log(cosx+1sinx)  \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x}}{{\sin x}} + \frac{1}{{\sin x}}} \right) \\\ \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x + 1}}{{\sin x}}} \right) \\\

Now let's use the identity.2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x.and sin2x=2sinxcosx\sin 2x = 2\sin x\cos xin the above equation

sinh1(cotx)=log(2cos2x22sinx2cosx2) sinh1(cotx)=log(cosx2sinx2) sinh1(cotx)=log(cotx2)  \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{2{{\cos }^2}\frac{x}{2}}}{{2\sin \frac{x}{2}\cos \frac{x}{2}}}} \right) \\\ \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos \frac{x}{2}}}{{\sin \frac{x}{2}}}} \right) \\\ \Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot \frac{x}{2}} \right) \\\

Therefore the correct option is A.

Note: Hyperbolic functions also satisfy identities analogous to those of the ordinary trigonometric functions and have important physical applications. For example, the hyperbolic cosine function may be used to describe the shape of the curve formed by a high-voltage line suspended between two towers
In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions.
For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle