Solveeit Logo

Question

Real Analysis Question on Sequences and Series

For 0 < a < 4, define the sequence \left\\{x_n\right\\}^{\infin}_{n=1} of real numbers as follows :
x1 = a and xn+1 + 2 = −xn(xn - 4) for n ∈ N\N.
Which of the following is/are TRUE ?

A

\left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(0,1)a \in (0,1)

B

\left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(1,2)a \in (1,2)

C

\left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(2,3)a \in (2,3)

D

\left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(3,4)a \in (3,4)

Answer

\left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(1,2)a \in (1,2)

Explanation

Solution

The correct option is (B) : \left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(1,2)a \in (1,2) and (C) : \left\\{x_n\right\\}^{\infin}_{n=1} converges for at least three distinct values of a(2,3)a \in (2,3).