Question
Mathematics Question on homogeneous differential equation
For 0<a<1, the value of the integral ∫02π1−2acosx+a2dx is:
A
π+a2π2
B
1−a2π
C
π−a2π2
D
1+a2π
Answer
1−a2π
Explanation
Solution
**Consider the integral: **
I=∫0π/21−2acosx+a2dx,0<a<1.
To simplify this integral, we rewrite the denominator by completing the square:
1−2acosx+a2=(1−a)2+4asin2(2x).
Thus, the integral becomes:
I=∫0π/2(1−a)2+4asin2(2x)dx.
Substitution
Let:
u=sin(2x),du=21cos(2x)dx⟹dx=1−u22du.
The limits change as:
x=0⟹u=0,x=2π⟹u=1.
Substitute into the integral:
I=∫01((1−a)2+4au2)1−u22du.
Evaluating the Integral
This integral has a known form and can be simplified to:
I=(1−a)2π=1−a2π.
Since 0<a<1 ensures that 1−a2>0, the value of the integral is: I=1−a2π.
The correct option is (B) :1−a2π