Question
Question: For 0 \<θ\<π/2, if x = \(\sum_{n = 0}^{\infty}{\cos^{2n}\theta,}y = \sum_{n = 0}^{\infty}{\sin^{2n}...
For 0 <θ<π/2, if x =
∑n=0∞cos2nθ,y=∑n=0∞sin2nθ,z=∑n=0∞cos2nθsin2nθ, then
A
xyz = xz + y
B
xyz = xy +z
C
xyz = yz +x
D
None of these
Answer
xyz = xy +z
Explanation
Solution
Here x = 1−cos2θ1 = cosec2θ , y = sec2 θ ,
z = 1−sin2θcos2θ1
z =1−x1.y11=xy−1xy ⇒ xyz = xy + z