Solveeit Logo

Question

Electromagnetic Theory Question on Wave equation

Following trial wave functions ϕ1=eZ(r1+r2)\phi_1 = e^{-Z' (r_1 + r_2)} and ϕ2=eZ(r1+r2)(1+gr1rˉ2)\phi_2 = e^{-Z' (r_1 + r_2) (1 + g |\vec{r}_1 - \bar{\vec{r}}_2|)} are used to obtain variational estimates E1E_1 and E2E_2 for the ground state energy E0E_0 of the helium atom. Here, ZZ' and gg are variational parameters, rˉ1\bar{\vec{r}}_1 and rˉ2\bar{\vec{r}}_2 are the position vectors of the electrons. Let E0E_0 be the exact ground state energy of the helium atom.E1E_1 and E2E_2 are the variational estimates of the ground state energy of the helium atom corresponding to ϕ1\phi_1 and ϕ2\phi_2, respectively, Which one of the following options is true?

A

E1E0,E2E0,E1E2E_1\leq E_0, E_2\leq E_0, E_1\geq E_2

B

E1E0,E2E0,E1E2E_1\geq E_0, E_2\leq E_0, E_1\geq E_2

C

E1E0,E2E0,E1E2E_1\leq E_0, E_2\geq E_0, E_1\leq E_2

D

E1E0,E2E0,E1E2E_1\geq E_0, E_2\geq E_0, E_1\geq E_2

Answer

E1E0,E2E0,E1E2E_1\geq E_0, E_2\geq E_0, E_1\geq E_2

Explanation

Solution

The correct option is (D): E1E0,E2E0,E1E2E_1\geq E_0, E_2\geq E_0, E_1\geq E_2