Question
Question: Following reaction takes place at $(\frac{600}{2.303\times0.8314})$ K temperature. $H_2(g) + 2Ag^+ ...
Following reaction takes place at (2.303×0.8314600) K temperature.
H2(g)+2Ag+(aq)⇌2Ag(s)+2H+(aq)
PH2=1.0bar,[Ag+]=10−6M,[H+]=10−3M,ΔfG∘(Ag+,aq)=75 kJ mol−1
Calculate z.
where z=19∣ΔrG(in kJ)∣

Answer
z=6
Explanation
Solution
-
Standard Reaction Free Energy:
H2(g)+2Ag+(aq)⟶2Ag(s)+2H+(aq)
For the reactionUsing ΔfG∘(H2)=ΔfG∘(Ag)=ΔfG∘(H+)=0 and given ΔfG∘(Ag+)=75kJ/mol,
ΔrG∘=[2×0+2×0]−[0+2×(75)]=−150kJ -
Reaction Quotient Q:
Q=[Ag+]2PH2[H+]2=(10−6)2×1(10−3)2=10−1210−6=106
With PH2=1.0bar, [Ag+]=10−6M and [H+]=10−3M, note that solids are omitted. Thus, -
Temperature:
T=2.303×0.8314600K≈1.9124600K≈314K.
Given -
Non‐Standard Free Energy Change:
ΔrG=ΔrG∘+RTlnQ
UseConvert R to kJ mol−1K−1: R=0.008314kJ mol−1K−1. Then,
RT=0.008314×314≈2.611kJ/mol, lnQ=ln(106)=6ln10≈6×2.303=13.818, RTlnQ≈2.611×13.818≈36.07kJ.Thus,
ΔrG=−150kJ+36.07kJ=−113.93kJ.Taking the absolute value: ∣ΔrG∣≈113.93kJ.
-
Calculation of z:
z=19∣ΔrG∣=19113.93≈6.