Solveeit Logo

Question

Question: Following reaction takes place at $(\frac{600}{2.303\times0.8314})$ K temperature. $H_2(g) + 2Ag^+ ...

Following reaction takes place at (6002.303×0.8314)(\frac{600}{2.303\times0.8314}) K temperature.

H2(g)+2Ag+(aq)2Ag(s)+2H+(aq)H_2(g) + 2Ag^+ (aq) \rightleftharpoons 2Ag(s) + 2H^+(aq)

PH2=1.0bar,[Ag+]=106M,[H+]=103M,ΔfG(Ag+,aq)=75 kJ mol1P_{H_2} = 1.0bar, [Ag^+] = 10^{-6}M, [H^+] = 10^{-3}M, \Delta_f G^{\circ}(Ag^+, aq) = 75 \text{ kJ mol}^{-1}

Calculate z.

where z=ΔrG(in kJ)19z = \frac{|\Delta_r G(\text{in kJ})|}{19}

Answer

z=6

Explanation

Solution

  1. Standard Reaction Free Energy:
    For the reaction

    H2(g)+2Ag+(aq)2Ag(s)+2H+(aq)H_{2}(g)+2Ag^+(aq)\longrightarrow 2Ag(s)+2H^+(aq)

    Using ΔfG(H2)=ΔfG(Ag)=ΔfG(H+)=0\Delta_fG^\circ(H_2)=\Delta_f G^\circ(Ag)=\Delta_f G^\circ(H^+)=0 and given ΔfG(Ag+)=75kJ/mol\Delta_fG^\circ(Ag^+) = 75\,\text{kJ/mol},

    ΔrG=[2×0+2×0][0+2×(75)]=150kJ\Delta_rG^\circ = [2\times 0 + 2\times 0] - [0 +2\times (75)] = -150\,\text{kJ}
  2. Reaction Quotient QQ:
    With PH2=1.0barP_{H_2}=1.0\,\text{bar}, [Ag+]=106M[Ag^+]=10^{-6}\,M and [H+]=103M[H^+]=10^{-3}\,M, note that solids are omitted. Thus,

    Q=[H+]2[Ag+]2PH2=(103)2(106)2×1=1061012=106Q=\frac{[H^+]^2}{[Ag^+]^2\, P_{H_2}} = \frac{(10^{-3})^2}{(10^{-6})^2\times 1} = \frac{10^{-6}}{10^{-12}}=10^{6}
  3. Temperature:
    Given

    T=6002.303×0.8314K6001.9124K314K.T=\frac{600}{2.303\times 0.8314}\,K \approx \frac{600}{1.9124}\,K \approx 314\,K.
  4. Non‐Standard Free Energy Change:
    Use

    ΔrG=ΔrG+RTlnQ\Delta_rG = \Delta_rG^\circ + RT\ln Q

    Convert RR to kJ mol1K1\text{kJ mol}^{-1}K^{-1}: R=0.008314kJ mol1K1R=0.008314\,\text{kJ mol}^{-1}K^{-1}. Then,

    RT=0.008314×3142.611kJ/mol,RT = 0.008314\times 314 \approx 2.611\,\text{kJ/mol}, lnQ=ln(106)=6ln106×2.303=13.818,\ln Q = \ln(10^6)=6\ln10\approx 6\times2.303=13.818, RTlnQ2.611×13.81836.07kJ.RT \ln Q \approx 2.611\times 13.818 \approx 36.07\,\text{kJ}.

    Thus,

    ΔrG=150kJ+36.07kJ=113.93kJ.\Delta_rG = -150\,\text{kJ}+36.07\,\text{kJ}=-113.93\,\text{kJ}.

    Taking the absolute value: ΔrG113.93kJ|\Delta_rG|\approx 113.93\,\text{kJ}.

  5. Calculation of zz:

    z=ΔrG19=113.93196.z=\frac{|\Delta_rG|}{19}=\frac{113.93}{19}\approx6.