Solveeit Logo

Question

Chemistry Question on Electrochemistry

Following limiting molar conductivities are given as λmo(H2SO4)=xScm2mol1\lambda^{o}_{m}\left(H_{2}SO_{4}\right) \,= \,x S\, cm^{2} mol^{-1} λmo(K2SO4)=yScm2mol1\lambda^{o}_{m}\left(K_{2}SO_{4}\right) = y S\,cm^{2} mol^{-1} λmo(CH3COOK)=zScm2mol1\lambda^{o}_{m}\left(CH_{3}COOK\right) =z S\, cm^{2} mol^{-1} λmo(inScm2mol1)\lambda^{o}_{m}\left(in \,S \,cm^{2} mol^{-1}\right) for CH3COOHCH_3COOH will be-

A

xy+2zx - y + 2 z

B

x+yzx + y - z

C

xy+zx - y + z

D

(xy)2+z\frac{\left(x -y\right)}{2}+z

Answer

(xy)2+z\frac{\left(x -y\right)}{2}+z

Explanation

Solution

CH3COOH>CH3COO+H+...(1)CH_3COOH {->} CH_3COO^- + H^+\,...(1)
H2SO4>2H++SO42...(2)H_2SO_4 {->} 2H^+ + SO_4^{-2} \,...(2)
K2SO4>2K++SO42...(3)K_2SO_4 {->} 2K^+ + SO_4^{-2} \,...(3)
CH3COOK>CH3COO+K+...(4)CH_3COOK {->} CH_3COO^- + K^+ \,...(4)
According to Kohlrausch's law-
λCH3COOH=λCH3COO+λH+\lambda^{\circ}_{CH_3COOH} = \lambda^{\circ}_{CH_3COO^-} + \lambda^{\circ}_{H^+}
e(1)=eq.(4)+eq.(2)2e(3)2e(1) = eq .(4) + eq . \frac{(2)}{2} - e \frac{(3)}{2}
λCH3COOH=z+X2Y2\therefore \lambda^{\circ}_{CH_3COOH} = z + \frac{X}{2} - \frac{Y}{2}
λCH3COOH=(XY)2+z(S×cm2mol1)\lambda^{\circ}_{CH_3COOH} = \frac{(X - Y)}{2} + z (S \times cm^2 mol^{-1})