Solveeit Logo

Question

Question: \(f:N \rightarrow N,f(x) = 2x + 3f:R \rightarrow R\) =...

f:NN,f(x)=2x+3f:RRf:N \rightarrow N,f(x) = 2x + 3f:R \rightarrow R =

A

f(x)=(x1)(x2)(x3)f(x) = (x - 1)(x - 2)(x - 3)

B

A={1,2,3,4},B={a,b}A = \{ 1,2,3,4\},B = \{ a,b\}

C

A={a,b,c},A = \{ a,b,c\},

D

f:RR,f:R \rightarrow R,

Answer

f:RR,f:R \rightarrow R,

Explanation

Solution

limx0\lim _ { x \rightarrow 0 } (00\left( \frac { 0 } { 0 } \right. form ))

L. Hospital rule

limx0\lim _ { x \rightarrow 0 } = limx0\lim _ { x \rightarrow 0 } 2sin2(x/2)4×(x/2)2×3\frac { - 2 \sin ^ { 2 } ( x / 2 ) } { 4 \times ( x / 2 ) ^ { 2 } \times 3 }

= 23×4\frac { - 2 } { 3 \times 4 } = 16- \frac { 1 } { 6 }