Solveeit Logo

Question

Mathematics Question on Matrices

Find X,if Y=[32\14]Y=\begin{bmatrix}3&2\\\1&4\end{bmatrix}and 2X+Y=[1032]2X+Y=\begin{bmatrix}1&0\\\\-3&2\end{bmatrix}

Answer

The correct answer is [1121]\begin{bmatrix}-1&-1\\\\-2&-1\end{bmatrix}
2X+Y=[1032]2X+Y=\begin{bmatrix}1&0\\\\-3&2\end{bmatrix}
    2X+[32\14]=[1032]\implies 2X+\begin{bmatrix}3&2\\\1&4\end{bmatrix}=\begin{bmatrix}1&0\\\\-3&2\end{bmatrix}
    2X=[1032][32\14]=[13023124]\implies 2X=\begin{bmatrix}1&0\\\\-3&2\end{bmatrix}-\begin{bmatrix}3&2\\\1&4\end{bmatrix}=\begin{bmatrix}1-3&0-2\\\\-3-1&2-4\end{bmatrix}
    2X=[2242]\implies 2X=\begin{bmatrix}-2&-2\\\\-4&-2\end{bmatrix}
X=12[2242]=[1121]\therefore X=\frac{1}{2}\begin{bmatrix}-2&-2\\\\-4&-2\end{bmatrix}=\begin{bmatrix}-1&-1\\\\-2&-1\end{bmatrix}