Solveeit Logo

Question

Mathematics Question on Matrices

Find x, if \begin{bmatrix} x &-5&-1 \end{bmatrix}$$\begin{bmatrix} 1 & 0 & 2\\\ 0 & 2 & 1 \\\2&1&3 \end{bmatrix}$$\begin{bmatrix} x \\\ 4\\\1 \end{bmatrix}=O

Answer

We have \begin{bmatrix} x &-5&-1 \end{bmatrix}$$\begin{bmatrix} 1 & 0 & 2\\\ 0 & 2 & 1 \\\2&1&3 \end{bmatrix}$$\begin{bmatrix} x \\\ 4\\\1 \end{bmatrix}=O

[x+02010+02x53]\begin{bmatrix} x+0-2 &0-10+-0 &2x-5-3\end{bmatrix} [x 4\1]=O\begin{bmatrix} x \\\ 4\\\1 \end{bmatrix}=O

[x2102x8]\begin{bmatrix} x-2 &-10&2x-8 \end{bmatrix} [x 4\1]=O\begin{bmatrix} x \\\ 4\\\1 \end{bmatrix}=O

[x(x2)40+2x8]=0\begin{bmatrix} x(x-2) -40+2x-8 \end{bmatrix}=0

[x22x40+2x8]=[0]\begin{bmatrix} x^2 -2x-40+2x-8 \end{bmatrix}=[0]

[x248]=[0]\begin{bmatrix} x^2 -48 \end{bmatrix}=[0]

x2=48\therefore x^2=48

x=43x= 4 \sqrt3