Question
Question: Find x, if \({4^{{{\log }_9}3}} + {9^{{{\log }_2}4}} = {10^{{{\log }_x}83}}\)...
Find x, if 4log93+9log24=10logx83
Solution
Hint : To solve this question, i.e., to find x, we will start with solving exponents first from the L.H.S., by using basic log identities, logbaN=Nlogba and logbNa=N1logba. Then taking R.H.S. as it is, we will equate with the earlier solved L.H.S. expression, on solving further we will get the value of x.
Complete step-by-step answer :
We have been given an equation, 4log93+9log24=10logx83. We need to find x.
So, {4^{{{\log }_9}3}} + {9^{{{\log }_2}4}} = {10^{{{\log }_x}83}}$$$ \ldots .eq.\left( 1 \right)$$
We know that, {\log _b}{a^N} = N{\log _b}aand{\log _{{b^N}}}a = \dfrac{1}{N}{\log _b}aNowtakingexponentof{4^{{{\log }_9}3}}from L.H.S. of $$eq.\left( 1 \right)$$ to solve separately, we get {\log _9}3 = {\log _{{3^2}}}3 = \dfrac{1}{2}{\log _3}3 = \dfrac{1}{2}Here,tosolvetheaboveexpression,wehaveused{\log _{{b^N}}}a = \dfrac{1}{N}{\log _b}a.Similarly,takingexponentof{9^{{{\log }_2}4}}from L.H.S. of $$eq.\left( 1 \right)$$ to solve separately, we get {\log _2}4 = {\log _2}{2^2} = 2{\log _2}2 = 2Here,tosolvetheaboveexpression,wehaveused{\log _b}{a^N} = N{\log _b}a$.
Now, on putting both the above solved values in eq.(1), we get