Solveeit Logo

Question

Question: Find \(x\) from the following equation: 1.\(coesc\left( {\dfrac{\pi }{2} + \theta } \right) + x\co...

Find xx from the following equation:
1.coesc(π2+θ)+xcosθcot(π2+θ)=sin(π2+θ)coesc\left( {\dfrac{\pi }{2} + \theta } \right) + x\cos \theta \cot \left( {\dfrac{\pi }{2} + \theta } \right) = \sin \left( {\dfrac{\pi }{2} + \theta } \right)
2.xcot(π2+θ)+sinθtan(π2+θ)+cosec(π2+θ)=0x\cot \left( {\dfrac{\pi }{2} + \theta } \right) + \sin \theta \tan \left( {\dfrac{\pi }{2} + \theta } \right) + \cos ec\left( {\dfrac{\pi }{2} + \theta } \right) = 0

Explanation

Solution

First we will convert (π2+θ)\left( {\dfrac{\pi }{2} + \theta } \right) into θ\theta after that we will convert all the trigonometric ratio by using secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }},tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} after simplifying that equate the linear equation with 0 and find the value of xx.

Complete step-by-step answer:
1:- Given coesc(π2+θ)+xcosθcot(π2+θ)=sin(π2+θ)coesc\left( {\dfrac{\pi }{2} + \theta } \right) + x\cos \theta \cot \left( {\dfrac{\pi }{2} + \theta } \right) = \sin \left( {\dfrac{\pi }{2} + \theta } \right)
Convert (π2+θ)\left( {\dfrac{\pi }{2} + \theta } \right)into θ\theta we get
secθxcosθtanθ=cosθ\Rightarrow \sec \theta - x\cos \theta \tan \theta = \cos \theta
We know thatsecθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} substituting these values, we get,
1cosθxsinθ=cosθ\Rightarrow \dfrac{1}{{\cos \theta }} - x\sin \theta = \cos \theta
Multiplying cosθ\cos \theta on both side we get,
1xcosθsinθ=cos2θ\Rightarrow 1 - x\cos \theta \sin \theta = {\cos ^2}\theta
We know that 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta
sin2θxsinθcosθ=0\Rightarrow {\sin ^2}\theta - x\sin \theta \cos \theta = 0
Taking sinθ\sin \theta common
sinθ(sinθxcosθ)=0\Rightarrow \sin \theta \left( {\sin \theta - x\cos \theta } \right) = 0
Now,
sinθxcosθ=0 x=tanθ  \Rightarrow \sin \theta - x\cos \theta = 0 \\\ \therefore x = \tan \theta \\\

2: - Given xcot(π2+θ)+sinθtan(π2+θ)+cosec(π2+θ)=0x\cot \left( {\dfrac{\pi }{2} + \theta } \right) + \sin \theta \tan \left( {\dfrac{\pi }{2} + \theta } \right) + \cos ec\left( {\dfrac{\pi }{2} + \theta } \right) = 0
Convert (π2+θ)\left( {\dfrac{\pi }{2} + \theta } \right) into θ\theta we get
xtanθsinθcotθ+secθ=0\Rightarrow - x\tan \theta - sin\theta \cot \theta + \sec \theta = 0
We know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }},tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} substituting these values, we get,
xsinθcosθcosθ+1cosθ=0\Rightarrow - x\dfrac{{\sin \theta }}{{\cos \theta }} - \cos \theta + \dfrac{1}{{\cos \theta }} = 0
Multiplying cosθ\cos \theta on both side we get,
1xsinθ=cos2θ\Rightarrow 1 - x\sin \theta = {\cos ^2}\theta
We know that 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta
sin2θxsinθcosθ=0\Rightarrow {\sin ^2}\theta - x\sin \theta \cos \theta = 0
Taking sinθ\sin \theta common
sinθ(sinθxcosθ)=0\Rightarrow \sin \theta \left( {\sin \theta - x\cos \theta } \right) = 0
Now,
sinθxcosθ=0 x=tanθ  \Rightarrow \sin \theta - x\cos \theta = 0 \\\ \therefore x = \tan \theta \\\

Note: Trigonometric formulas used in this question coesc(π2+θ)=secθcoesc\left( {\dfrac{\pi }{2} + \theta } \right) = \sec \theta ,cot(π2+θ)=tanθ\cot \left( {\dfrac{\pi }{2} + \theta } \right) = - \tan \theta ,sin(π2+θ)=cosθ\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta and must be taken into consideration. We can also say as sinθ=0\sin \theta = 0then θ=nπ\theta = n\pi . But in this question, we cannot consider θ=nπ\theta = n\pi because when we consider it x=0x = 0which contradicts the question.