Question
Question: Find \(x\) from the following equation: 1.\(coesc\left( {\dfrac{\pi }{2} + \theta } \right) + x\co...
Find x from the following equation:
1.coesc(2π+θ)+xcosθcot(2π+θ)=sin(2π+θ)
2.xcot(2π+θ)+sinθtan(2π+θ)+cosec(2π+θ)=0
Solution
First we will convert (2π+θ) into θ after that we will convert all the trigonometric ratio by using secθ=cosθ1,tanθ=cosθsinθ and cotθ=sinθcosθ after simplifying that equate the linear equation with 0 and find the value of x.
Complete step-by-step answer:
1:- Given coesc(2π+θ)+xcosθcot(2π+θ)=sin(2π+θ)
Convert (2π+θ)into θ we get
⇒secθ−xcosθtanθ=cosθ
We know thatsecθ=cosθ1 and tanθ=cosθsinθ substituting these values, we get,
⇒cosθ1−xsinθ=cosθ
Multiplying cosθ on both side we get,
⇒1−xcosθsinθ=cos2θ
We know that 1−cos2θ=sin2θ
⇒sin2θ−xsinθcosθ=0
Taking sinθ common
⇒sinθ(sinθ−xcosθ)=0
Now,
⇒sinθ−xcosθ=0 ∴x=tanθ
2: - Given xcot(2π+θ)+sinθtan(2π+θ)+cosec(2π+θ)=0
Convert (2π+θ) into θ we get
⇒−xtanθ−sinθcotθ+secθ=0
We know that secθ=cosθ1,tanθ=cosθsinθ and cotθ=sinθcosθ substituting these values, we get,
⇒−xcosθsinθ−cosθ+cosθ1=0
Multiplying cosθon both side we get,
⇒1−xsinθ=cos2θ
We know that 1−cos2θ=sin2θ
⇒sin2θ−xsinθcosθ=0
Taking sinθ common
⇒sinθ(sinθ−xcosθ)=0
Now,
⇒sinθ−xcosθ=0 ∴x=tanθ
Note: Trigonometric formulas used in this question coesc(2π+θ)=secθ,cot(2π+θ)=−tanθ,sin(2π+θ)=cosθand must be taken into consideration. We can also say as sinθ=0then θ=nπ. But in this question, we cannot consider θ=nπbecause when we consider it x=0which contradicts the question.