Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find xx from the equation cosec(90+θ)+xcosθcot(90+θ)=sin(90+θ)cosec\left(90^{\circ}+\theta\right)+x\,cos\theta\,cot\left(90^{\circ}+\theta\right)=sin\left(90^{\circ}+\theta\right).

A

cotθcot\,\theta

B

tanθtan\,\theta

C

tanθ- tan\,\theta

D

cotθ-cot\,\theta

Answer

tanθtan\,\theta

Explanation

Solution

The given equation is cosec(90+θ)+xcosθcot(90+θ)=sin(90+θ)cosec\left(90^{\circ}+\theta\right)+xcos\theta\,cot\left(90^{\circ}+\theta\right)=sin\left(90^{\circ}+\theta\right) secθ+xcosθ(tanθ)=cosθ\Rightarrow sec\theta+xcos\theta\left(-tan\theta\right)=cos\theta secθxsinθ=cosθ\Rightarrow sec\theta-x\,sin\theta=cos\theta xsinθ=secθcosθ=1cosθcosθ\Rightarrow xsin\theta=sec\theta-cos\theta=\frac{1}{cos\,\theta}-cos\theta xsinθ=1cos2θcosθ=sin2θcosθ\Rightarrow xsin\theta=\frac{1-cos^{2}\,\theta}{cos\,\theta}=\frac{sin^{2}\,\theta}{cos\,\theta} x=tanθ\Rightarrow x=tan\theta.