Solveeit Logo

Question

Question: Find \[X\] and \[Y\] if the mean is given by 261. CI| 100-150| 150-200| 200-250| 250-300| 300...

Find XX and YY if the mean is given by 261.

CI100-150150-200200-250250-300300-350Total
fi{f_i}4XX12YY225
Explanation

Solution

We will find XX and YY by solving 2 linear equations. We will get the first equation by equation sum of all frequencies with 25. We will get the second equation by finding the mean and equating it to 261.
Formulas used: 1. mean=fixifi{\text{mean}} = \dfrac{{\sum {{f_i}{x_i}} }}{{\sum {{f_i}} }} where fi{f_i} is the frequency of the ith{i^{th}} class and xi{x_i} id the median of the ith{i^{th}} class.
2. Median of a class(xi)=L+U2\left( {{x_i}} \right) = \dfrac{{L + U}}{2} where LL is the lower limit of the class and UU is the upper limit of the class.

Complete step by step solution:
First, let’s create a table and find the median of each class by using the second formula.

Class Intervalfi{f_i}xi{x_i}
100-1504100+1502=125\dfrac{{100 + 150}}{2} = 125
150-200XX150+2002=175\dfrac{{150 + 200}}{2} = 175
200-25012200+2502=225\dfrac{{200 + 250}}{2} = 225
250-300YY250+3002=275\dfrac{{250 + 300}}{2} = 275
300-3502300+3502=325\dfrac{{300 + 350}}{2} = 325
Total25

Let’s multiply the 2nd2^{\text{nd}} and 3rd3^{\text{rd}} column and find fixi{f_i}{x_i} for each class interval.

Class Intervalfi{f_i}xi{x_i}fixi{f_i}{x_i}
100-15041254125=5004 \cdot 125 = 500
150-200XX175X175=175XX \cdot 175 = 175X
200-2501222512225=270012 \cdot 225 = 2700
250-300YY275Y275=275YY \cdot 275 = 275Y
300-35023252325=6502 \cdot 325 = 650
Total25

Let’s add all the elements of the third column and write the sum in the last row.

Class Intervalfi{f_i}xi{x_i}fixi{f_i}{x_i}
100-1504125500
150-200XX175175X175X
200-250122252700
250-300YY275275Y275Y
300-3502325650
Total253850+175X+275Y3850 + 175X + 275Y

Let’s find the sum of all frequencies and equate the sum to 25.
4+X+12+Y+2=25 18+X+Y=25\begin{array}{l}4 + X + 12 + Y + 2 = 25\\\ \Rightarrow 18 + X + Y = 25\end{array}
Let’s subtract 18+Y18 + Y from both sides of the equation.
18+X+Y(18+Y)=25(18+Y) 18+X+Y18Y=2518Y X=7Y (1)\begin{array}{l}18 + X + Y - \left( {18 + Y} \right) = 25 - \left( {18 + Y} \right)\\\ \Rightarrow 18 + X + Y - 18 - Y = 25 - 18 - Y\\\ \Rightarrow X = 7 - Y{\text{ }}\left( 1 \right)\end{array}
Let’s substitute 25 for fi\sum {{f_i}} , 3850+175X+275Y3850 + 175X + 275Yfor fixi\sum {{f_i}{x_i}} and 261 for mean in the 1st formula.
261=3850+175X+275Y25 261=154+7X+11Y\begin{array}{l}261 = \dfrac{{3850 + 175X + 275Y}}{{25}}\\\ \Rightarrow 261 = 154 + 7X + 11Y\end{array}
Let’s subtract 154 from both sides.
261154=154+7X+11Y154 107=7X+11Y\begin{array}{l}261 - 154 = 154 + 7X + 11Y - 154\\\ \Rightarrow 107 = 7X + 11Y\end{array}
To find XX and YY, let’s substitute 7Y7 - Y for XX in the above equation.
107=7(7Y)+11Y 107=497Y+11Y\begin{array}{l}107 = 7\left( {7 - Y} \right) + 11Y\\\ \Rightarrow 107 = 49 - 7Y + 11Y\end{array}
Let’s subtract 49 from both sides of the equation.
10749=497Y+11Y49 58=4Y 584=Y 292=Y\begin{array}{l}107 - 49 = 49 - 7Y + 11Y - 49\\\ \Rightarrow 58 = 4Y\\\ \Rightarrow \dfrac{{58}}{4} = Y\\\ \Rightarrow \dfrac{{29}}{2} = Y\end{array}
Substitute 292\dfrac{{29}}{2} for YY in the 1st equation.
X=7292 X=7.5\begin{array}{l}X = 7 - \dfrac{{29}}{2}\\\ \Rightarrow X = - 7.5\end{array}
We will substitute 7.5 - 7.5 for XX in equation (1).
Y=7(7.5) Y=7+7.5 Y=14.5\begin{array}{l}Y = 7 - \left( { - 7.5} \right)\\\ \Rightarrow Y = 7 + 7.5\\\ \Rightarrow Y = 14.5\end{array}
The given question is incorrect as the frequency can never be negative.

Note:
Frequency of an entry indicates the number of times that entry has been made. Therefore, the frequency can never be negative. It’s obvious that we should avoid calculation mistakes in such questions because a minor mistake of sign or value can get you a wrong answer.