Question
Mathematics Question on Matrices
Find X and Y,if (i)X+Y=[7\205] and X-Y=\begin{bmatrix}3&0\\\0&3\end{bmatrix}$$(ii)2X+3Y=\begin{bmatrix}2&3\\\4&0\end{bmatrix}and 3X+2Y=2−1−25
(i)X+Y=[7\205]−(1)
X−Y=[3\003]−(2)
Adding equations (1) and (2), we get:
2X=\begin{bmatrix}7&0\\\2&5\end{bmatrix}+\begin{bmatrix}3&0\\\0&3\end{bmatrix}$$=\begin{bmatrix}7+3& 0+0\\\ 2+0& 5+3\end{bmatrix}$$=\begin{bmatrix}10& 0\\\ 2& 8\end{bmatrix}
X=21[10 208]=[5\104]
Now X+Y=[7\205]
⟹[5\104]+Y=[7\205]
⟹Y=[7\205]−[5\104]
⟹Y=[7−5 2−10−05−4]
∴Y=[2\101]
(ii)2X+3Y=[2\430]−(3)
3X+2Y=2−1−25−(4)
Multiplying equation (3) with (2), we get:
2(2X+3Y)=2[2\430]
⟹4X+6Y=[4\860]....(5)
Multiplying equation (4) with (3), we get:
3(3X+2Y)=32−1−25
⟹9X+6Y=6−3−615....(6)
From (5) and (6), we have:
(4X+6Y)−(9X+6Y)
=[4\860]−6−3−615
⟹−5X=[4−6 8−(−3)6−(−6)0−15]=[−2 1112−15]
∴X=5−1[−2 1112−15]=[52 5−115−123]
Now,2X+3Y=[2\430]
⟹2[52 5−115−123]+3Y=[2\430]
⟹[54 5−225−246]+3Y=[2\430]
⟹3Y=[2\430]−[54 5−225−246]
⟹3Y=[2−54 4+5223+5240−6]=[56 542539−6]
∴Y=31[56 542539−6]==[52 514513−2]