Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Find (x+1)6−(x−1)6. Hence or otherwise evaluate (2+1)6+(2−1)6.
Answer
Using Binomial Theorem, the expressions, (x+1)6 and (x−1)6, can be expanded as
(x+1)6= ^6C_0 x^6+ ^6C_1 x^5$$+ ^6C_2 x^4 + ^6C_3 x^3$$+ ^6C_4 x^2 + ^6C_5 x + ^6C_6
(x−1)6= ^6C_0 x^6 - ^6C_1 x^5 + ^6C_2 x^4$$- ^6C_3 x^3$$+ ^6C_4 x^2 - ^6C_5 x + ^6C_6
(x+1)6+(x−1)6=2[6C0x6 +6C2x4+ 6C4x2+ 6C6]
=2[x6+15x4+15x2+1]
By putting x=2,we obtain
(2+1)6+(2−1)6 = 2[(2)6+15(2)4+15(2)2+1]
=2(8+15×4+15×2+1)
=2(8+60+30+1)
=2(99)
=198
Hence,(2+1)6+(2−1)6=198.