Solveeit Logo

Question

Question: Find which of the given matrices is not invertible. A. \(\left[ \begin{matrix} 1 & 1 \\\ ...

Find which of the given matrices is not invertible.
A. [11 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]
B. [11 12 ]\left[ \begin{matrix} -1 & -1 \\\ -1 & 2 \\\ \end{matrix} \right]
C. [23 46 ]\left[ \begin{matrix} 2 & 3 \\\ 4 & 6 \\\ \end{matrix} \right]
D. [22 11 ]\left[ \begin{matrix} 2 & -2 \\\ 1 & 1 \\\ \end{matrix} \right]

Explanation

Solution

We first define what is the condition for a matrix to be invertible. We establish the concept of a non-singular matrix. Then we find the determinant value of the given matrices. If the matrix is nonsingular then we find the inverse of the matrix.

Complete step-by-step solution
We know that for a matrix A to be invertible, it has to be non-singular which means the determinant value is non-zero. So, we have to find the determinant value of every given matrix.
Let’s assume A=[11 01 ]A=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]. So, det(A)=11 01 \det \left( A \right)=\left| \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right|.
Using expansion method, we get det(A)=A=1×10×1=1\det \left( A \right)=\left| A \right|=1\times 1-0\times 1=1. So, A is invertible.
Now we find its inverse. If A1{{A}^{-1}} be the inverse of A then A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}. Here adj(A)adj\left( A \right) defines the cofactors of elements. If A=[aij]A=\left[ {{a}_{ij}} \right], then adj(A)=[Aji]adj\left( A \right)=\left[ {{A}_{ji}} \right]. Here aij{{a}_{ij}} represents the element of ith{{i}^{th}} row and jth{{j}^{th}} column. Aji{{A}_{ji}} represents the cofactor of the element aij{{a}_{ij}}.
adj(A)=[11 01 ]adj\left( A \right)=\left[ \begin{matrix} 1 & -1 \\\ 0 & 1 \\\ \end{matrix} \right] and A1=[11 01 ]{{A}^{-1}}=\left[ \begin{matrix} 1 & -1 \\\ 0 & 1 \\\ \end{matrix} \right] as det(A)=1\det \left( A \right)=1.
Let’s assume B=[11 12 ]B=\left[ \begin{matrix} -1 & -1 \\\ -1 & 2 \\\ \end{matrix} \right]. So, det(B)=11 12 \det \left( B \right)=\left| \begin{matrix} -1 & -1 \\\ -1 & 2 \\\ \end{matrix} \right|.
Using expansion method, we get det(B)=B=2×(1)(1)×(1)=21=3\det \left( B \right)=\left| B \right|=2\times \left( -1 \right)-\left( -1 \right)\times \left( -1 \right)=-2-1=-3. So, B is invertible.
Now we find its inverse. If B1{{B}^{-1}} be the inverse of B then B1=adj(B)B{{B}^{-1}}=\dfrac{adj\left( B \right)}{\left| B \right|}. Here adj(B)adj\left( B \right) defines the cofactors of elements. If B=[bij]B=\left[ {{b}_{ij}} \right], then adj(B)=[Bji]adj\left( B \right)=\left[ {{B}_{ji}} \right]. Here bij{{b}_{ij}} represents the element of ith{{i}^{th}} row and jth{{j}^{th}} column. Bji{{B}_{ji}} represents the cofactor of the element bij{{b}_{ij}}.
adj(B)=[21 11 ]adj\left( B \right)=\left[ \begin{matrix} 2 & 1 \\\ 1 & -1 \\\ \end{matrix} \right] and B1=13[21 11 ]=13[21 11 ]{{B}^{-1}}=\dfrac{-1}{3}\left[ \begin{matrix} 2 & 1 \\\ 1 & -1 \\\ \end{matrix} \right]=\dfrac{1}{3}\left[ \begin{matrix} -2 & -1 \\\ -1 & 1 \\\ \end{matrix} \right] as det(B)=3\det \left( B \right)=-3.
Let’s assume C=[23 46 ]C=\left[ \begin{matrix} 2 & 3 \\\ 4 & 6 \\\ \end{matrix} \right]. So, det(C)=23 46 \det \left( C \right)=\left| \begin{matrix} 2 & 3 \\\ 4 & 6 \\\ \end{matrix} \right|.
Using expansion method, we get det(C)=C=2×63×4=1212=0\det \left( C \right)=\left| C \right|=2\times 6-3\times 4=12-12=0. So, C is not invertible.
Let’s assume D=[22 11 ]D=\left[ \begin{matrix} 2 & -2 \\\ 1 & 1 \\\ \end{matrix} \right]. So, det(D)=22 11 \det \left( D \right)=\left| \begin{matrix} 2 & -2 \\\ 1 & 1 \\\ \end{matrix} \right|.
Using expansion method, we get det(D)=D=2×1(2)×1=2+2=4\det \left( D \right)=\left| D \right|=2\times 1-\left( -2 \right)\times 1=2+2=4. So, D is invertible.
Now we find its inverse. If D1{{D}^{-1}} be the inverse of D then D1=adj(D)D{{D}^{-1}}=\dfrac{adj\left( D \right)}{\left| D \right|}. Here adj(D)adj\left( D \right) defines the cofactors of elements. If D=[dij]D=\left[ {{d}_{ij}} \right], then adj(D)=[Dji]adj\left( D \right)=\left[ {{D}_{ji}} \right]. Here dij{{d}_{ij}} represents the element of ith{{i}^{th}} row and jth{{j}^{th}} column. Dji{{D}_{ji}} represents the cofactor of the element dij{{d}_{ij}}.
adj(D)=[12 12 ]adj\left( D \right)=\left[ \begin{matrix} 1 & 2 \\\ -1 & 2 \\\ \end{matrix} \right] and D1=14[12 12 ]=12[11 11 ]{{D}^{-1}}=\dfrac{1}{4}\left[ \begin{matrix} 1 & 2 \\\ -1 & 2 \\\ \end{matrix} \right]=\dfrac{1}{2}\left[ \begin{matrix} 1 & 1 \\\ -1 & 1 \\\ \end{matrix} \right] as det(A)=4\det \left( A \right)=4.
Therefore, the matrix in option C isn’t invertible.

Note: We need to remember that another trick way to find the adjoint of only 2×22\times 2 matrix A is that we interchange the elements of aij,i=j{{a}_{ij}},i=j. There are two such elements a11,a22{{a}_{11}},{{a}_{22}}. Then we just change the sign of the element of aij,ij{{a}_{ij}},i\ne j where we have two such elements a12,a21{{a}_{12}},{{a}_{21}}. To find the inverse we follow the normal procedure of A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}..