Solveeit Logo

Question

Question: Find which of the following options equals the value of \(4\cos 6\theta \cos 4\theta \cos 2\theta \)...

Find which of the following options equals the value of 4cos6θcos4θcos2θ4\cos 6\theta \cos 4\theta \cos 2\theta ?
(a) cos12θ+cos8θ+cos4θ+1\cos 12\theta +\cos 8\theta +\cos 4\theta +1,
(b) cos12θ+cos8θcos4θ+1\cos 12\theta +\cos 8\theta -\cos 4\theta +1,
(c) cos12θcos8θ+cos4θ+1\cos 12\theta -\cos 8\theta +\cos 4\theta +1,
(d) cos12θcos8θcos4θ+1\cos 12\theta -\cos 8\theta -\cos 4\theta +1.

Explanation

Solution

We start solving the problem by writing the given product rearranging the terms in product. We then use the identity 2cosAcosB = cos(A+B)+cos(AB)2\cos A\cos B\ =\ \cos \left( A+B \right)+\cos \left( A-B \right) in the rearranged product by assuming the values for A and B to proceed further into the problem. We then make necessary calculations and make use of identities 1+cos2A=2cos2A1+\cos 2A=2{{\cos }^{2}}A and 2cosAcosB = cos(A+B)+cos(AB)2\cos A\cos B\ =\ \cos \left( A+B \right)+\cos \left( A-B \right) to proceed further in the problem. We then make necessary calculations to get the required result.

Complete step-by-step answer:
According to the problem, we need to compute the given function 4cos6θcos4θcos2θ4\cos 6\theta \cos 4\theta \cos 2\theta to the given options.
We are given a function as 4cos6θcos4θcos2θ4\cos 6\theta \cos 4\theta \cos 2\theta . Let us rewrite the given product as shown below:
4cos6θcos4θcos2θ=(2cos4θ)×(2cos6θcos2θ)\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =\left( 2\cos 4\theta \right)\times \left( 2\cos 6\theta \cos 2\theta \right) ---(1).
Let us apply the trigonometric identity 2cosAcosB = cos(A+B)+cos(AB)2\cos A\cos B\ =\ \cos \left( A+B \right)+\cos \left( A-B \right) for the terms 2cos6θcos2θ2\cos 6\theta \cos 2\theta in equation (1), assuming A as 6θ6\theta and B as 2θ2\theta .
Now, let us solve further.
4cos6θcos4θcos2θ=2cos4θ×[cos(6θ+2θ)+cos(6θ2θ)]\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \times \left[ \cos \left( 6\theta +2\theta \right)+\cos \left( 6\theta -2\theta \right) \right].
4cos6θcos4θcos2θ=2cos4θ×[cos(8θ)+cos(4θ)]\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \times \left[ \cos \left( 8\theta \right)+\cos \left( 4\theta \right) \right].
Let us now perform the multiplication operation on the Right-Hand Side (R.H.S).
4cos6θcos4θcos2θ=2cos4θcos8θ+2cos4θcos4θ\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \cos 8\theta +2\cos 4\theta \cos 4\theta .
4cos6θcos4θcos2θ=2cos4θcos8θ+2cos24θ\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \cos 8\theta +2{{\cos }^{2}}4\theta ---(2).
We know that 1+cos2A=2cos2A1+\cos 2A=2{{\cos }^{2}}A. We use this result in equation (2) to solve the problem further.
4cos6θcos4θcos2θ=2cos4θcos8θ+(1+cos8θ)\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \cos 8\theta +\left( 1+\cos 8\theta \right).
4cos6θcos4θcos2θ=2cos4θcos8θ+cos8θ+1\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =2\cos 4\theta \cos 8\theta +\cos 8\theta +1 ---(3).
Now, let us use the identity 2cosAcosB = cos(A+B)+cos(AB)2\cos A\cos B\ =\ \cos \left( A+B \right)+\cos \left( A-B \right) in equation (1), assuming A as 8θ8\theta and B as 4θ4\theta .
Now, let us solve the problem further.
4cos6θcos4θcos2θ=cos(8θ+4θ)+cos(8θ4θ)+cos8θ+1\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =\cos \left( 8\theta +4\theta \right)+\cos \left( 8\theta -4\theta \right)+\cos 8\theta +1.
4cos6θcos4θcos2θ=cos(12θ)+cos(4θ)+cos8θ+1\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =\cos \left( 12\theta \right)+\cos \left( 4\theta \right)+\cos 8\theta +1.
4cos6θcos4θcos2θ=cos12θ+cos4θ+cos8θ+1\Rightarrow 4\cos 6\theta \cos 4\theta \cos 2\theta =\cos 12\theta +\cos 4\theta +\cos 8\theta +1.
So, we have found that the value of 4cos6θcos4θcos2θ4\cos 6\theta \cos 4\theta \cos 2\theta as cos12θ+cos4θ+cos8θ+1\cos 12\theta +\cos 4\theta +\cos 8\theta +1.

So, the correct answer is “Option A”.

Note: We can solve this problem easily by assuming an angle for θ\theta and checking all the options which is equal to the given product. We should not confuse the trigonometric identities present in the problem. We should not make calculation mistakes while solving this problem. Whenever we get problems involving multiplication of two or more trigonometric functions, we should start solving by using the trigonometric as we just used in the problem.