Solveeit Logo

Question

Question: Find whether the following series are convergent or divergent: \[1 + \dfrac{3}{7}x + \dfrac{{3.6}...

Find whether the following series are convergent or divergent:
1+37x+3.67.10x2+3.6.97.10.13x3+3.6.9.127.10.13.16x4+....1 + \dfrac{3}{7}x + \dfrac{{3.6}}{{7.10}}{x^2} + \dfrac{{3.6.9}}{{7.10.13}}{x^3} + \dfrac{{3.6.9.12}}{{7.10.13.16}}{x^4} + ....

Explanation

Solution

Hint : In the problem given above we need to find the values of xx for which the series converge or diverge.. There are various tests that are performed and we will start with d’Alembert’s ratio test which states that the series S=k=1xkS = \sum\limits_{k = 1}^\infty {{x_k}} is convergent if there is a rr where r<1r < 1 for limnxn+1xn=r\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = r while the series is divergent, if and if $$x = 1$$ then it cannot be concluded whether the series is convergent or divergent. Later on we will apply Raabe’s test.

Complete step by step solution:
Here for the given series
1+37x+3.67.10x2+3.6.97.10.13x3+3.6.9.127.10.13.16x4+....1 + \dfrac{3}{7}x + \dfrac{{3.6}}{{7.10}}{x^2} + \dfrac{{3.6.9}}{{7.10.13}}{x^3} + \dfrac{{3.6.9.12}}{{7.10.13.16}}{x^4} + ....
The sum of series will be
Sn=1+IIi=13nxn(3n+4){S_n} = 1 + {\rm I}{\rm I}_{i = 1}^\infty \dfrac{{3n{x^n}}}{{(3n + 4)}}
The Tn{T_n} term of the series will be
Tn=3.6.9.......(3n)xn7.10.13......(3n+4){T_n} = \dfrac{{3.6.9.......(3n){x^n}}}{{7.10.13......(3n + 4)}}
Therefore Tn+1{T_{n + 1}} term of the series will be
Tn+1=3.6.9.12......(3n)(3n+3)xn+17.10.13......(3n+4)(3n+7){T_{n + 1}} = \dfrac{{3.6.9.12......(3n)(3n + 3){x^{n + 1}}}}{{7.10.13......(3n + 4)(3n + 7)}}
Now by using the Ratio test for the given infinite series the equation will be
limnTn+1Tn=limn(3n+3)(3n+7)xn+1xn=limn(3+3/n3+7/n)x=x\mathop {\lim }\limits_{n \to \infty } \dfrac{{{T_{n + 1}}}}{{{T_n}}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{(3n + 3)}}{{(3n + 7)}}\dfrac{{{x^{n + 1}}}}{{{x^n}}} = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{3 + 3/n}}{{3 + 7/n}}} \right)x = x
For, x>1x > 1 , IIi=13nxn(3n+4){\rm I}{\rm I}_{i = 1}^\infty \dfrac{{3n{x^n}}}{{(3n + 4)}} diverges
x<1x < 1 , IIi=13nxn(3n+4){\rm I}{\rm I}_{i = 1}^\infty \dfrac{{3n{x^n}}}{{(3n + 4)}} converges
Which means that Sn=1+IIi=13nxn(3n+4){S_n} = 1 + {\rm I}{\rm I}_{i = 1}^\infty \dfrac{{3n{x^n}}}{{(3n + 4)}} converges for x<1x < 1 and Sn=1+IIi=13nxn(3n+4){S_n} = 1 + {\rm I}{\rm I}_{i = 1}^\infty \dfrac{{3n{x^n}}}{{(3n + 4)}} diverges for x>1x > 1 and for x=1x = 1 ratio test fails
Now later on we will apply Raabe’s Test

limn[TnTn+11]n=limn n[3n+73n+31] limn n[3n+73n+33n+3]=limn4nn(3+3/n)=43  \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{{{T_n}}}{{{T_{n + 1}}}} - 1} \right] n = \mathop {\lim }\limits_{n \to \infty } {\text{ n}}\left[ {\dfrac{{3n + 7}}{{3n + 3}} - 1} \right] \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } {\text{ n}}\left[ {\dfrac{{3n + 7 - 3n + 3}}{{3n + 3}}} \right] = \mathop {\lim }\limits_{n \to \infty } \dfrac{{4n}}{{n(3 + 3/n)}} = \dfrac{4}{3} \\\

Since we can see that
limn[TnTn+11]n=43>1\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{{{T_n}}}{{{T_{n + 1}}}} - 1} \right] n = \dfrac{4}{3} > 1
The series is convergent for x=1x = 1

Note : The sum of an infinite sequence of numbers is known as series. The series can be convergent or divergent.
Notes: While solving the above equation always remember that if a number is divided by an infinite value then the results obtained will be equal to zero. Keep in mind that if a ratio test gets failed it does not ensure the nature of the series and apply Raabe’s test also. Here we will also notice that for any positive value of xx , the numerator is always greater than the denominator which means each term is greater than 11 hence the given infinite series is convergent